Resposta:
Explicació:
Una de les propietats de tres números consecutius és que la seva suma és sempre un múltiple de 3.
Per què és això?
Es poden escriure números consecutius com
La suma de 3 números consecutius es dóna per
=
El
Quins dels números donats són divisibles per 3?
Simplement podeu afegir els seus dígits per esbrinar-ho.
Si la suma dels dígits d’un nombre és un múltiple de 3, el nombre en si és divisible per 3.
Només 61 no és divisible per 3. Per tant, no és la suma de tres números consecutius.
La mitjana dels 7 primers números era de 21. La mitjana dels següents tres números era només de 11. Quina era la mitjana general dels números?
La mitjana global és de 18. Si la mitjana de 7 números és 21, significa que el total dels 7 nombres és (21xx7), que és 147. Si la mitjana de 3 números és 11, significa que el total dels 3 números és (11xx3), que és 33. Per tant, la mitjana dels 10 números (7 + 3) serà (147 + 33) / 10 180/10 18
Es poden representar tres nombres enters consecutius per n, n + 1 i n + 2. Si la suma de tres enters consecutius és 57, quins són els enters?
18,19,20 La suma és l'addició del nombre de manera que la suma de n, n + 1 i n + 2 es pot representar com, n + n + 1 + n + 2 = 57 3n + 3 = 57 3n = 54 n = 18 de manera que el nostre primer nombre sencer és de 18 (n) el nostre segon és de 19, (18 + 1) i el nostre tercer és de 20, (18 + 2).
Conèixer la fórmula a la suma dels N enters A) quina és la suma dels primers ners enters consecutius quadrats, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Suma dels primers N sers sencers consecutius Sigma_ (k = 1) ^ N k ^ 3?
Per a S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Tenim sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 resolent per a suma_ {i = 0} ^ ni ^ 2 suma {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni però sum_ {i = 0} ^ ni = ((n + 1) n) / 2 així que sum_ {i = 0} ^ ni ^ 2 =