Resposta:
Explicació:
El volum d’un cub augmenta a un ritme de 20 centímetres cúbics per segon. Què tan ràpid, en centímetres quadrats per segon, la superfície del cub augmenta en el moment en què cada vora del cub té 10 centímetres de llarg?
Tingueu en compte que la vora del cub varia amb el temps de manera que sigui una funció del temps l (t); tan:
Quan es col·loca a la caixa, es pot descriure una pizza gran com "inscrita" en un quadre quadrat. Si la pizza té 1 "de gruix, trobar el volum de la pizza, en polzades cúbiques, donat que el volum de la caixa és de 324 polzades cúbiques?
He trobat: 254,5 "in" ^ 3 He provat això: Té sentit ...?
Producte d'un nombre positiu de dos dígits i el dígit del lloc de la seva unitat és 189. Si el dígit del lloc dels deu és el que hi ha al lloc de la unitat, quin és el dígit al lloc de la unitat?
3. Tingueu en compte que els números de dos dígits. complir la segona condició (cond.) són, 21,42,63,84. Entre aquests, des del 63xx3 = 189, conclouem que els dos dígits no. és 63 i el dígit desitjat al lloc de la unitat és 3. Per resoldre el problema de manera metòdica, suposem que el dígit del lloc de deu sigui x i el de la unitat, y. Això significa que els dos dígits no. és 10x + y. "The" 1 ^ (st) "cond." RArr (10x + y) y = 189. "El" 2 ^ (nd) "cond." RArr x = 2y. Sub.ing x = 2y a (10x + y) y = 189, {10 (2y) + y} = 18