Resposta:
La diagonal és
Explicació:
La diagonal d'un rectangle fa un triangle dret, amb la diagonal (d) com la hipotenusa, i la longitud (l) i l'amplada (w) com els altres dos costats.
Podeu utilitzar el teorema de Pitàgores per resoldre la diagonal (hipotenusa).
Connectar
Prengui l’arrel quadrada dels dos costats.
La diagonal d'un rectangle és de 13 polzades. La longitud del rectangle és de 7 polzades més que la seva amplada. Com es troba la longitud i l’amplada del rectangle?
Anomenem l’amplada x. Llavors la longitud és x + 7 La diagonal és la hipotenusa d'un triangle rectangular. Així: d ^ 2 = l ^ 2 + w ^ 2 o (omplint el que sabem) 13 ^ 2 = 169 = (x + 7) ^ 2 + x ^ 2 = x ^ 2 + 14x + 49 + x ^ 2 -> 2x ^ 2 + 14x-120 = 0-> x ^ 2 + 7x-60 = 0 Una equació quadràtica simple que es resol a: (x + 12) (x-5) = 0-> x = -12orx = 5 només la solució positiva es pot utilitzar així: w = 5 i l = 12 extra: el triangle (5,12,13) és el segon triangle pitagòric més senzill (on tots els costats són nombres sencers). El més simple és (3
La longitud d’un rectangle és de 4 menys de l’ample de dues vegades. l'àrea del rectangle és de 70 peus quadrats. trobar l’amplada, w, del rectangle algebraicament. expliqui per què una de les solucions per w no és viable. ?
Una resposta s’anomena negativa i la longitud mai pot ser 0 o inferior. Deixar w = "width" Deixeu 2w - 4 = "length" "Area" = ("length") ("width") (2w - 4) (w) = 70 2w ^ 2 - 4w = 70 w ^ 2 - 2w = 35 w ^ 2 - 2w - 35 = 0 (w-7) (w + 5) = 0 Així que w = 7 o w = -5 w = -5 no és viable perquè els mesuraments han de ser per sobre de zero.
Originalment, un rectangle era el doble de llarg que ample. Quan es van afegir 4 m a la seva longitud i es van restar 3 m de la seva amplada, el rectangle resultant tenia una superfície de 600 m ^ 2. Com trobeu les dimensions del nou rectangle?
Amplada original = 18 metres Longitud original = 36 mtres El truc amb aquest tipus de pregunta és fer un esbós ràpid. D'aquesta manera podeu veure el que passa i idear un mètode de solució. Conegut: l’àrea és "amplada" xx "longitud" => 600 = (w-3) (2w + 4) => 600 = 2w ^ 2 + 4w-6w-12 Resta 600 dels dos costats => 2w ^ 2-2w -612 = 0 => (2w-36) (w + 17) = 0 => w = -17 No és lògic que una longitud sigui negativa en aquest context de manera que w! = - 17 w = 18 => L = 2xx18 = 36 '~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Revisa (36 + 4) (18-3) = 40xx1