Resposta:
Explicació:
Primer compte que:
Així, de fet, aquesta expressió només és una funció de
L’amplada d’un pati rectangular és de 2x-5 peus i la longitud és de 3x + 9 peus. Com s'escriu un polinomi P (x) que representa el perímetre i després avaluar aquest perímetre i després avaluar aquest polinomi perimetral si x és de 4 peus?
El perímetre és el doble de la suma de l'amplada i la longitud. P (x) = 2 ((2x-5) + (3x + 9)) = 2 (5x + 4) = 10x + 8 P (4) = 10 (4) + 8 = 48 Comprovació. x = 4 significa una amplada de 2 (4) -5 = 3 i una longitud de 3 (4) + 9 = 21, per tant, un perímetre de 2 (3 + 21) = 48. quad sqrt
Nick pot llançar un beisbol tres vegades més que el nombre de peus, f, que Jeff pot llançar el beisbol. Quina és l’expressió que es pot utilitzar per trobar el nombre de peus que Nick pot llançar a la pilota?
4f +3 Atès que, el nombre de peus que Jeff pot llançar al beisbol és que Nick pot llançar un beisbol tres més de quatre vegades el nombre de peus. 4 vegades el nombre de peus = 4f i tres més que això serà 4f + 3 Si el nombre de vegades que Nick pot llançar el beisbol és donat per x, llavors, l'expressió que es pot utilitzar per trobar el nombre de peus que Nick pot llençar la pilota serà: x = 4f +3
Per què no es pot avaluar x = _3C_9?
No és impossible avaluar: és només 0. La millor manera de pensar en _nC_r és com "n tria r" o "quantes maneres puc triar coses de n coses?" En el vostre cas, això significaria "quantes maneres puc triar 9 coses de 3 coses?" Si només tinc 3 coses, no puc escollir 9 coses. Per tant, hi ha 0 maneres possibles de fer-ho. Si voleu considerar _9C_3, podem calcular fàcilment que: _9C_3 = (9!) / (3! 6!) = (9 * 8 * 7) / (3 * 2 * 1) = 3 * 4 * 7 = 84