Quina és l’equació de la línia que passa per (4,2) amb pendent m = -4/5?

Quina és l’equació de la línia que passa per (4,2) amb pendent m = -4/5?
Anonim

Resposta:

Suposo que ho desitgeu en forma d’interconnexió de taludes.

Explicació:

S'ha escrit el formulari d’intercepció de pendents y = mx + b, on m és el pendent, b és la intercepció y, i x i y es mantenen escrits com x i y en l'equació final.

Com ja tenim el pendent, la nostra equació és ara:

y = (- 4/5) x + b (perquè m representa el pendent de manera que connectem el valor de la inclinació a per m).

Ara hem de trobar l’interconnexió. Per fer-ho, simplement utilitzem el punt donat, connectant 4 per a x i 2 per y. Sembla que:

2 = (4/5) (4) + b

2 = 16/5 + b

b = -4 / 5

Ara connectem -4/5 per a b i -4/5 per m i obtenim la nostra última equació:

y = (- 4/5) x-4/5