Resposta:
Explicació:
A continuació es mostra la gràfica de la funció f (x) = (x + 2) (x + 6). Quina afirmació sobre la funció és certa? La funció és positiva per a tots els valors reals de x on x> –4. La funció és negativa per a tots els valors reals de x on –6 <x <–2.
La funció és negativa per a tots els valors reals de x on –6 <x <–2.
Mostrar que totes les seqüències poligonals generades per la sèrie de seqüències aritmètiques amb diferències comunes d, d en ZZ són seqüències poligonals que poden generar a_n = an ^ 2 + bn + c?
A_n = P_n ^ (d + 2) = an ^ 2 + b ^ n + c amb a = d / 2; b = (2-d) / 2; c = 0 P_n ^ (d + 2) és una sèrie poligonal de rang, r = d + 2 exemple donada una seqüència aritmètica que comptar per d = 3 tindreu un color (vermell) (pentagonal): P_n ^ color ( vermell) 5 = 3 / 2n ^ 2-1 / 2n donant P_n ^ 5 = {1, color (vermell) 5, 12, 22,35,51, cdots} Es construeix una seqüència poligonal prenent la enèsima suma d’una aritmètica seqüència. En el càlcul, seria una integració. Així doncs, la hipòtesi clau aquí és: donat que la seqüència aritm&
Què és el radi de convergència per a aquesta sèrie de potències? ln (1-z) = - z - 1/2 z ^ 2 - 1/3 z ^ 3 ...
Abs z <1 d / (dz) (z-1 / 2z ^ 2 + 1 / 3z ^ 3 + cdots + (- 1) ^ (n + 1) / nz ^ n + cdots) = sum_ (k = 0) ^ oo (-1) ^ kz ^ k però sum_ (k = 0) ^ oo (-1) ^ kz ^ k = lim_ (n-> oo) (z ^ n + 1) / (z + 1). Ara considerant abs z <1 tenim sum_ (k = 0) ^ oo (-1) ^ kz ^ k = 1 / (1 + z) i int sum_ (k = 0) ^ oo (-1) ^ kz ^ k dz = log (1 + z) fent ara la substitució z -> - z tenim -int sum_ (k = 0) ^ oo z ^ k dz = -sum_ (k = 1) ^ oo z ^ k / k = log (1-z) pel que és convergent per abs z <1