Resposta:
Explicació:
Aquest és un problema de regla de producte i cadena bastant estàndard.
La regla de la cadena estableix que:
La regla del producte indica que:
Combinant aquests dos, podem esbrinar-ho
(Perquè
Què són els extrems i els punts de selecció de f (x) = 2x ^ 2 lnx?
El domini de definició de: f (x) = 2x ^ 2lnx és l'interval x en (0, + oo). Avaluar les derivades primera i segona de la funció: (df) / dx = 4xlnx + 2x ^ 2 / x = 2x (1 + 2lnx) (d ^ 2f) / dx ^ 2 = 2 (1 + 2lnx) + 2x * 2 / x = 2 + 4lnx + 4 = 6 + lnx Els punts crítics són les solucions de: f '(x) = 0 2x (1 + 2lnx) = 0 i com x> 0: 1 + 2lnx = 0 lnx = -1 / 2 x = 1 / sqrt (e) En aquest punt: f '' (1 / sqrte) = 6-1 / 2 = 11/2> 0 per la qual cosa el punt crític és un mínim local. Els punts de muntatge són les solucions de: f '' (x) = 0 6 + lnx = 0 lnx = -6 x =
Què és la derivada de lnx ^ lnx?
= 2 (ln x) / x (lnx ^ lnx) ^ '= (ln x lnx) ^' = (ln ^ 2 x) ^ '= 2 ln x * 1 / x
Quina és la derivada de f (x) = (x ^ 3- (lnx) ^ 2) / (lnx ^ 2)?
Utilitzeu la regla de quotes i la regla de cadena. La resposta és: f '(x) = (3x ^ 3lnx 2-2 (lnx) ^ 2-2x ^ 3) / (x (lnx ^ 2) ^ 2) Aquesta és una versió simplificada. Vegeu Explicació per veure fins a quin punt es pot acceptar com a derivada. f (x) = (x ^ 3- (lnx) ^ 2) / lnx ^ 2 f '(x) = ((x ^ 3- (lnx) ^ 2)' * lnx ^ 2- (x ^ 3- ( lnx) ^ 2) (lnx ^ 2) ') / (lnx ^ 2) ^ 2 f' (x) = ((3x ^ 2-2lnx * (lnx) ') * lnx ^ 2- (x ^ 3- ( lnx) ^ 2) 1 / x ^ 2 (x ^ 2) ') / (lnx ^ 2) ^ 2 f' (x) = ((3x ^ 2-2lnx * 1 / x) * lnx ^ 2- (x ^ 3- (lnx) ^ 2) 1 / x ^ 2 * 2x) / (lnx ^ 2) ^ 2 En aquest form