Resposta:
Els forats negres estel·lars es formen als nuclis de les estrelles gegants, mentre que els forats negres supermasius es formen al centre de les galàxies i queden allà.
Explicació:
Els forats negres massius són ENORMES i poden estirar-se durant gairebé dos mil milions de quilòmetres! Els forats negres estel·lars, no obstant això, són molt més petits i s'estenen al voltant de 20-100 milles. Vam recórrer el buit de l'espai, devorant estrelles. Els forats negres supermassius es mantenen al centre de les galàxies i el mantenen junts.
Quines són les principals causes i les principals conseqüències de la Guerra dels Trenta Anys? Analitzeu a fons dues causes i dues conseqüències.
La guerra dels trenta anys va ser en realitat una sèrie de guerres. Va començar com una unificació religiosa i es va convertir en un gran conflicte del poder. Va ser molt destructiu a Europa central i va dividir Alemanya fins al 1870. Ferran II va ser un catòlic fort. Va heretar gran part de l'Europa central quan es va convertir en emperador romà. Gran part d’aquesta àrea era protestant després del cisma occidental (la Reforma) i ho feia durant aproximadament un segle. Fernando va intentar obligar els protestants a convertir-se en catòlics. Quan va ser rebutjat, tenia gran part d
Maya té 2x tants grans blancs com perles negres. Després d’utilitzar 40 negres i 5 negres per fer un collaret, té 3x tants grans negres com blancs. Quantes perles negres va començar?
Va començar amb 23 comptes negres. Suposem que Maya té boles negres B i, per tant, té comptes blanques de 2B. Va utilitzar 5 grans negres i 40 comptes blanques, de manera que va quedar amb comptes negres (B-5) i comptes blanques 2B-40. Ara, ja que té 3 vegades més grans que el negre, B-5 = 3xx (2B-40) o B-5 = 6B-120 o 120-5 = 6B-B o 5B = 115, és a dir, B = 115/5 = 23 Per tant, va començar amb 23 comptes negres.
Mostrar que totes les seqüències poligonals generades per la sèrie de seqüències aritmètiques amb diferències comunes d, d en ZZ són seqüències poligonals que poden generar a_n = an ^ 2 + bn + c?
A_n = P_n ^ (d + 2) = an ^ 2 + b ^ n + c amb a = d / 2; b = (2-d) / 2; c = 0 P_n ^ (d + 2) és una sèrie poligonal de rang, r = d + 2 exemple donada una seqüència aritmètica que comptar per d = 3 tindreu un color (vermell) (pentagonal): P_n ^ color ( vermell) 5 = 3 / 2n ^ 2-1 / 2n donant P_n ^ 5 = {1, color (vermell) 5, 12, 22,35,51, cdots} Es construeix una seqüència poligonal prenent la enèsima suma d’una aritmètica seqüència. En el càlcul, seria una integració. Així doncs, la hipòtesi clau aquí és: donat que la seqüència aritm&