Resposta:
18 polzades quadrades
Explicació:
La fórmula per trobar l'àrea d’un paral·lelogram és el temps base de l’altura. És fàcil veure com funciona en paral·lelograms amb només
En aquesta imatge, podeu veure que cada paral·lelogram es pot reordenar (en un sentit) per convertir-se en un rectangle, per la qual cosa podeu utilitzar la mateixa fórmula per determinar la seva àrea.
L'àrea d'un paral·lelogram és de 24 centímetres i la base del paral·lelogram és de 6 centímetres. Quina és l'alçada del paral·lelogram?
4 centímetres. L'àrea d'un paral·lelogram és la base xx alçada 24cm ^ 2 = (6 xx alçada) implica 24/6 = alçada = 4 cm
Dos costats oposats d'un paral·lelogram tenen longituds de 3. Si una cantonada del paral·lelogram té un angle de pi / 12 i l'àrea del paral·lelogram és de 14, quant de temps són els altres dos costats?
Assumint una mica de trigonometria bàsica ... Sigui x la longitud (comuna) de cada costat desconegut. Si b = 3 és la mesura de la base del paral·lelogram, h sigui la seva alçada vertical. L’àrea del paral·lelogram és bh = 14 Atès que es coneix b, tenim h = 14/3. Des de Trig bàsic, sin (pi / 12) = h / x. Podem trobar el valor exacte del sinus utilitzant una fórmula de mig angle o diferència. sin (pi / 12) = sin (pi / 3 - pi / 4) = sin (pi / 3) cos (pi / 4) - cos (pi / 3) sin (pi / 4) = (sqrt6 - sqrt2) / 4. Així ... (sqrt6 - sqrt2) / 4 = h / xx (sqrt6 - sqrt2) = 4h
Un paral·lelogram té una base de longitud 2x + 1, una alçada de x + 3 i una àrea de 42 unitats quadrades. Quina és la base i l’altura del paral·lelogram?
La base és 7, l'alçada és 3. L'àrea de qualsevol paral·lelogram és Longitud x Amplada (que de vegades es diu alçada, depèn del llibre de text). Sabem que la longitud és de 2x + 1 i l’amplada (AKA Height) és x + 3, per la qual cosa els posem en una expressió després de Length x Width = Area i resolem per obtenir x = 3. A continuació, el connectem a cada equació per obtenir 7 per a la base i 6 per l’altura.