Resposta:
# y = x ^ 2/12-x / 2-5 / 4 #
Explicació:
Donat -
vèrtex
Focus
Equació de la paràbola
# (x-h) ^ 2 = 4a (i-k) #
On -
# a = sqrt ((3-3) ^ 2 + (- 2-1) ^ 2) = 3
Substituïu els valors de
# x-3) ^ 2 = 4,3 (i + 2) #
# x ^ 2-6x + 9 = 12y + 24 #
# 12y + 24 = x ^ 2-6x + 9 #
# 12y = x ^ 2-6x + 9-24 #
# y = 1/12 (x ^ 2-6x-15) #
# y = x ^ 2/12-x / 2-5 / 4 #
Suposem que una paràbola té vèrtex (4,7) i passa també pel punt (-3,8). Quina és l’equació de la paràbola en forma de vèrtex?
En realitat, hi ha dues paràboles (de forma de vèrtex) que compleixen les vostres especificacions: y = 1/49 (x- 4) ^ 2 + 7 i x = -7 (y-7) ^ 2 + 4 Hi ha dues formes de vèrtex: y = a (x- h) ^ 2 + k i x = a (yk) ^ 2 + h on (h, k) és el vèrtex i el valor de "a" es pot trobar utilitzant un altre punt. No se'ns dóna cap raó per excloure una de les formes, per tant substituïm el vèrtex donat a ambdues: y = a (x- 4) ^ 2 + 7 i x = a (y-7) ^ 2 + 4 Resoldre per a tots dos valors d’un usant el punt (-3,8): 8 = a_1 (-3- 4) ^ 2 + 7 i -3 = a_2 (8-7) ^ 2 + 4 1 = a_1 (-7) ^ 2 i - 7
Quina és l'equació d'una paràbola amb un focus a (-2, 6) i un vèrtex a (-2, 9)? Què passa si el focus i el vèrtex s’han canviat?
L’equació és y = -1 / 12 (x + 2) ^ 2 + 9. L’altra equació és y = 1/12 (x + 2) * 2 + 6 El focus és F = (- 2,6) i el vèrtex és V = (- 2,9) Per tant, la directriu és y = 12 com el vèrtex és el punt mig del focus i el directrix (y + 6) / 2 = 9 =>, y + 6 = 18 =>, y = 12 Qualsevol punt (x, y) de la paràbola és equidistant del focus i la directriu y-12 = sqrt ((x + 2) ^ 2 + (i-6) ^ 2) (y-12) ^ 2 = (x + 2) ^ 2 + (y-6) ^ 2 i ^ 2 -24y + 144 = (x + 2) ^ 2 + y ^ 2-12y + 36 12y = - (x + 2) ^ 2 + 108 y = -1 / 12 (x + 2) ^ 2 + 9 gràfics {( y + 1/12 (x + 2) ^ 2-9) (i-1
Quina és la forma de vèrtex d'una paràbola donada el vèrtex (41,71) i zeros (0,0) (82,0)?
La forma del vèrtex seria -71/1681 (x-41) ^ 2 + 71 L'equació de la forma de vèrtex és donada per: f (x) = a (xh) ^ 2 + k, on el vèrtex es troba al punt (h , k) Així, substituint el vèrtex (41,71) a (0,0), obtenim, f (x) = a (xh) ^ 2 + k 0 = a (0-41) ^ 2 + 71 0 = a (-41) ^ 2 + 71 0 = 1681a + 71 a = -71/1681 Així que la forma del vèrtex seria f (x) = -71/1681 (x-41) ^ 2 + 71.