Resposta:
Explicació:
Vaig a utilitzar
Aplicant les fórmules:
Així,
Podeu comprovar si la resposta és correcta inserint els valors calculats.
Allà, finalitzeu!:)
Mostrar que cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Estic una mica confós si fa Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10), es tornarà negatiu com cos (180 ° -theta) = - costheta a el segon quadrant. Com puc provar la pregunta?
Si us plau mireu més a baix. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Resol (2 + sqrt3) cos theta = 1-pecat theta?
Rarrx = (6n-1) * (pi / 3) rarrx = (4n + 1) pi / 2 On nrarrZ rarr (2 + sqrt (3)) cosx = 1-sinx rarrtan75 ^ @ * cosx + sinx = 1 rarr ( sin75 ^ @ * cosx) / (cos75 ^ @) + sinx = 1 rarrsinx * cos75 ^ @ + cosx * sin75 ^ @ = cos75 ^ @ = sin (90 ^ @ - 15 ^ @) = sin15 ^ @ rarrsin (x + 75 ^ @) - sin15 ^ @ = 0 rarr2sin ((x + 75 ^ @ - 15 ^ @) / 2) cos ((x + 75 ^ @ + 15 ^ @) / 2) = 0 rarrsin ((x + 60 ^ @) / 2) * cos ((x + 90 ^ @) / 2) = 0 rarrsin ((x + 60 ^ @) / 2) = 0 rarr (x + 60 ^ @) / 2 = npi rarrx = 2npi-60 ^ @ = 2npi-pi / 3 = (6n-1) * (pi / 3) o, cos ((x + 90 ^ @) / 2) = 0 rarr (x + 90 ^ @) / 2 = (2n + 1) pi / 2 rarrx = 2 * (2n +
Què significa -3sin (arccos (2)) - cos (arc cos (3)) igual?
Problema insoluble No hi ha arcs que el seu cosinus sigui igual a 2 i 3. Des del punt de vista analític, la funció arccos només es defineix a [-1, 1], de manera que arccos (2) i arccos (3) no existeixen. .