Resposta:
L’alçada (longitud) és
Explicació:
La diagonal d'un triangle dret és la hipotenusa i es designa com a lateral
L’equació pitagòrica és
Torneu a organitzar l'equació per resoldre-la
Substituïu els valors coneguts a l’equació.
Prengui l’arrel quadrada dels dos costats.
La diagonal d'un rectangle és de 13 polzades. La longitud del rectangle és de 7 polzades més que la seva amplada. Com es troba la longitud i l’amplada del rectangle?
Anomenem l’amplada x. Llavors la longitud és x + 7 La diagonal és la hipotenusa d'un triangle rectangular. Així: d ^ 2 = l ^ 2 + w ^ 2 o (omplint el que sabem) 13 ^ 2 = 169 = (x + 7) ^ 2 + x ^ 2 = x ^ 2 + 14x + 49 + x ^ 2 -> 2x ^ 2 + 14x-120 = 0-> x ^ 2 + 7x-60 = 0 Una equació quadràtica simple que es resol a: (x + 12) (x-5) = 0-> x = -12orx = 5 només la solució positiva es pot utilitzar així: w = 5 i l = 12 extra: el triangle (5,12,13) és el segon triangle pitagòric més senzill (on tots els costats són nombres sencers). El més simple és (3
La longitud d'un rectangle és de 3,5 polzades més que la seva amplada. El perímetre del rectangle és de 31 polzades. Com es troba la longitud i l’amplada del rectangle?
Longitud = 9,5 ", Ample = 6" Comenceu amb l’equació del perímetre: P = 2l + 2w. A continuació, empleneu la informació que coneixem. El perímetre és de 31 "i la longitud és igual a l’amplada + 3,5". Per això: 31 = 2 (w + 3,5) + 2w perquè l = w + 3,5. A continuació, solucionem per w dividint-ho tot per 2. Es deixa llavors amb 15,5 = w + 3,5 + w. A continuació, resteu 3.5 i combineu el w per obtenir: 12 = 2w. Finalment, dividiu de nou per 2 per trobar w i obtenim 6 = w. Això ens indica que l’amplada és igual a 6 polzades, la meitat del proble
La longitud d’un rectangle és 3 vegades la seva amplada. Si la longitud s’incrementés en 2 polzades i l’amplada per 1 polzada, el nou perímetre seria de 62 polzades. Quina és l'amplada i la longitud del rectangle?
La longitud és de 21 i l'amplada és de 7 Utilitzeu l per a longitud i w per a amplada Primer es dóna que l = 3w Nova longitud i amplada és l + 2 i w + 1 respectivament. També el nou perímetre és 62. Així, l + 2 + l + 2 + w + 1 + w + 1 = 62 o, 2l + 2w = 56 l + w = 28 Ara tenim dues relacions entre l i w Substituïm el primer valor de l en la segona equació. Obtindrem, 3w + w = 28 4w = 28 w = 7 Posant aquest valor de w en una de les equacions, l = 3 * 7 l = 21 Així la longitud és 21 i l'amplada és 7