Resposta:
0
Explicació:
En primer lloc, el gràfic de
Ara hem de saber si
El discriminant d'una equació quadràtica és -5. Quina resposta descriu el nombre i el tipus de solucions de l'equació: 1 solució complexa 2 solucions reals 2 solucions complexes 1 solució real?
La vostra equació quadràtica té 2 solucions complexes. El discriminant d’una equació quadràtica només pot proporcionar informació sobre una equació de la forma: y = ax ^ 2 + bx + c o una paràbola. Com que el grau més alt d'aquest polinomi és 2, no ha de tenir més de dues solucions. El discriminant és simplement les coses sota el símbol de l'arrel quadrada (+ -sqrt ("")), però no el propi símbol de l'arrel quadrada. + -sqrt (b ^ 2-4ac) Si el discriminant, b ^ 2-4ac, és inferior a zero (és a dir, qualsevol nombre n
Tomas va escriure l'equació y = 3x + 3/4. Quan Sandra va escriure la seva equació, van descobrir que la seva equació tenia totes les mateixes solucions que l'equació de Tomás. Quina equació podria ser de Sandra?
4y = 12x +3 12x-4y +3 = 0 Una equació es pot donar en moltes formes i encara significa el mateix. y = 3x + 3/4 "" (conegut com a forma de pendent / intercepció.) Multiplicat per 4 per eliminar la fracció que dóna: 4y = 12x +3 "" rarr 12x-4y = -3 "" (forma estàndard) 12x- 4y +3 = 0 "" (forma general) Totes es troben en la forma més senzilla, però també podríem tenir variacions infinites. 4y = 12x + 3 es podria escriure com: 8y = 24x +6 "" 12y = 36x +9, 20y = 60x +15 etc
Utilitzeu el discriminant per determinar el nombre i el tipus de solucions que té l’equació? x ^ 2 + 8x + 12 = 0 A.no solució real B. solució real C. dues solucions racionals D. dues solucions irracionals
C. dues solucions racionals La solució a l'equació quadràtica a * x ^ 2 + b * x + c = 0 és x = (-b + - sqrt (b ^ 2 - 4 * a * c)) / (2 * a In el problema considerat, a = 1, b = 8 i c = 12 Substituint, x = (-8 + - sqrt (8 ^ 2 - 4 * 1 * 12)) / (2 * 1 o x = (-8+ - sqrt (64 - 48)) / (2 x = (-8 + - sqrt (16)) / (2 x = (-8 + - 4) / (2 x = (-8 + 4) / 2 i x = (-8 - 4) / 2 x = (- 4) / 2 i x = (-12) / 2 x = - 2 i x = -6