El producte de dos enters parells consecutius és 24. Cerqueu els dos enters. Respon primer en forma de punts aparellats amb el més baix dels dos enters. Resposta?
Els dos enters parells consecutius: (4,6) o (-6, -4) Deixen, el color (vermell) (n i n-2 ser els dos enters parells consecutius, on el color (vermell) (n inZZ Producte de n i n-2 és 24, és a dir n (n-2) = 24 => n ^ 2-2n-24 = 0 ara, [(-6) + 4 = -2 i (-6) xx4 = -24]: .n ^ 2-6n + 4n-24 = 0: .n (n-6) +4 (n-6) = 0:. (N-6) (n + 4) = 0: .n-6 = 0 o n + 4 = 0 ... a [n inZZ] => color (vermell) (n = 6 o n = -4 (i) color (vermell) (n = 6) => color (vermell) (n-2) = 6-2 = color (vermell) (4) Així, els dos enters parells consecutius: (4,6) (ii)) color (vermell) (n = -4) => color (vermell) (n-2) = -4-2 = color
Els números d’habitació de dues aules adjacents són dos números parells consecutius. Si la seva suma és de 418, quins són aquests números d’habitació?
Vegeu un procés de solució a continuació: anomenem el primer número de sala r. Llavors, perquè són números parells consecutius, podem anomenar el segon número de sala r + 2. Coneixent la seva suma és 418 podem escriure la següent equació i resoldre per rr + (r + 2) = 418 r + r + 2 = 418 1r + 1r + 2 = 418 (1 + 1) r + 2 = 418 2r + 2 = 418 2r + 2 - color (vermell) (2) = 418 - color (vermell) (2) 2r + 0 = 416 2r = 416 (2r) / color (vermell) (2) = 416 / color (vermell) (2) (color (vermell) (cancel·lar (color (negre) (2))) r) / cancel·lar (color (vermell) (2) ) = 2
"Lena té 2 enters consecutius.Es nota que la seva suma és igual a la diferència entre els seus quadrats. Lena escull dos altres enters consecutius i nota la mateixa cosa. Demostrar algebraicament que això és cert per a 2 enters consecutius?
Si us plau, consulteu l'explicació. Recordem que els enters consecutius difereixen per 1. Per tant, si m és un sencer, llavors, l’enter sencer ha de ser n + 1. La suma d'aquests dos enters és n + (n + 1) = 2n + 1. La diferència entre els seus quadrats és (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, com es desitja! Sent la joia de les matemàtiques.