Resposta:
Vegeu l'explicació …
Explicació:
Heus aquí un esbós d’una prova per contradicció:
Suposem
Sense pèrdua de generalitat, podem suposar això
A continuació, per definició:
# 5 = (p / q) ^ 2 = p ^ 2 / q ^ 2 #
Multiplica els dos extrems per
# 5 q ^ 2 = p ^ 2 #
Tan
Després, des de
Tan
Així que tenim:
# 5 q ^ 2 = p ^ 2 = (5m) ^ 2 = 5 * 5 * m ^ 2 #
Divideix els dos extrems per
# q ^ 2 = 5 m ^ 2 #
Divideix els dos extrems per
# 5 = q ^ 2 / m ^ 2 = (q / m) ^ 2 #
Tan
Ara
Així, doncs, la nostra hipòtesi
Què és [5 (arrel quadrada de 5) + 3 (arrel quadrada de 7)] / [4 (arrel quadrada de 7) - 3 (arrel quadrada de 5)]?
(159 + 29sqrt (35)) / 47 color (blanc) ("XXXXXXXX") assumint que no he fet cap error aritmètic (5 (sqrt (5)) + 3 (sqrt (7))) / (4 (sqrt) (7)) - 3 (sqrt (5)) Racionalitzeu el denominador multiplicant pel conjugat: = (5 (sqrt (5)) + 3 (sqrt (7))) / (4 (sqrt (7)) - 3 (sqrt (5))) xx (4 (sqrt (7)) + 3 (sqrt (5))) / (4 (sqrt (7)) + 3 (sqrt (5))) = (20sqrt (35) + 15 ((sqrt (5)) ^ 2) +12 ((sqrt (7)) ^ 2) + 9sqrt (35)) / (16 ((sqrt (7)) ^ 2) -9 ((sqrt (5) ) ^ 2)) = (29sqrt (35) +15 (5) +12 (7)) / (16 (7) -9 (5)) = (29sqrt (35) + 75 + 84) / (112-45 ) = (159 + 29sqrt (35)) / 47
Què és (arrel quadrada 2) + 2 (arrel quadrada 2) + (arrel quadrada 8) / (arrel quadrada 3)?
(sqrt (2) + 2sqrt (2) + sqrt8) / sqrt3 sqrt 8 es pot expressar com a color (vermell) (2sqrt2 l'expressió ara es converteix en: (sqrt (2) + 2sqrt (2) + color (vermell) (2sqrt2) ) / sqrt3 = (5sqrt2) / sqrt3 sqrt 2 = 1.414 i sqrt 3 = 1.732 (5 xx 1.414) / 1.732 = 7.07 / 1.732 = 4.08
Quina és l'arrel quadrada de 7 + arrel quadrada de 7 ^ 2 + arrel quadrada de 7 ^ 3 + arrel quadrada de 7 ^ 4 + arrel quadrada de 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) El primer que podem fer és cancel·lar les arrels amb les potències parells. Des de: sqrt (x ^ 2) = x i sqrt (x ^ 4) = x ^ 2 per a qualsevol nombre, podem dir que sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Ara, 7 ^ 3 poden ser reescrits com 7 ^ 2 * 7, i que 7 ^ 2 pot sortir de l’arrel! El mateix s'aplica a 7 ^ 5 però es reescriu com 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + 7sqrt (7) + 49 + 49sqrt (7) Ara