Resposta:
Què és:
Explicació:
Utilitzeu aquesta regla perquè els radicals combinin els termes:
A continuació, podem reescriure el terme sota el radical com:
Ara, utilitzeu aquesta regla per als radicals per simplificar l’expressió:
Resposta:
Explicació:
Tingueu en compte que ara tenim entre els factors de 175 un quadrat sota l’arrel quadrada que podem treure per simplificar
En general, val la pena fer un seguiment dels factors que anticipen, de manera que, en aquest cas, recordeu-ho
Quina és la forma simplificada de l'arrel quadrada de l'arrel quadrada de 10 de 5 sobre l'arrel quadrada de 10 + arrel quadrada de 5?
(sqrt (10) -sqrt (5)) / (sqrt (10) + sqrt (5) = 3-2sqrt (2) (sqrt (10) -sqrt (5)) / (sqrt (10) + sqrt (5) ) color (blanc) ("XXX") = cancel (sqrt (5)) / cancel (sqrt (5)) * (sqrt (2) -1) / (sqrt (2) +1) color (blanc) (") XXX ") = (sqrt (2) -1) / (sqrt (2) +1) * (sqrt (2) -1) / (sqrt (2) -1) color (blanc) (" XXX ") = ( sqrt (2) -1) ^ 2 / ((sqrt (2) ^ 2-1 ^ 2) color (blanc) ("XXX") = (2-2sqrt2 + 1) / (2-1) color (blanc) ("XXX") = 3-2sqrt (2)
Quina és l'arrel quadrada de 3 + l'arrel quadrada de 72 - l'arrel quadrada de 128 + l'arrel quadrada de 108?
7sqrt (3) - 2sqrt (2) sqrt (3) + sqrt (72) - sqrt (128) + sqrt (108) Sabem que 108 = 9 * 12 = 3 ^ 3 * 2 ^ 2, de manera que sqrt (108) = sqrt (3 ^ 3 * 2 ^ 2) = 6sqrt (3) sqrt (3) + sqrt (72) - sqrt (128) + 6sqrt (3) Sabem que 72 = 9 * 8 = 3 ^ 2 * 2 ^ 3, de manera que sqrt (72) = sqrt (3 ^ 2 * 2 ^ 3) = 6sqrt (2) sqrt (3) + 6sqrt (2) - sqrt (128) + 6sqrt (3) Sabem que 128 = 2 ^ 7 , per tant sqrt (128) = sqrt (2 ^ 6 * 2) = 8sqrt (2) sqrt (3) + 6sqrt (2) - 8sqrt (2) + 6sqrt (3) Simplificació de 7sqrt (3) - 2sqrt (2)
Quina és l'arrel quadrada de 7 + arrel quadrada de 7 ^ 2 + arrel quadrada de 7 ^ 3 + arrel quadrada de 7 ^ 4 + arrel quadrada de 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) El primer que podem fer és cancel·lar les arrels amb les potències parells. Des de: sqrt (x ^ 2) = x i sqrt (x ^ 4) = x ^ 2 per a qualsevol nombre, podem dir que sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Ara, 7 ^ 3 poden ser reescrits com 7 ^ 2 * 7, i que 7 ^ 2 pot sortir de l’arrel! El mateix s'aplica a 7 ^ 5 però es reescriu com 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + 7sqrt (7) + 49 + 49sqrt (7) Ara