Resposta:
L’espai és principalment un buit, fins on sabem.
Explicació:
Això pot ser un concepte difícil per a alguns, però la major part de l’espai no té importància, només és buit. Dark Matter, una cosa poc entesa que sembla tenir gravetat, però que no interactua amb la radiació electromagnètica, pot omplir alguns (o potser molt) d’aquest espai, però els científics són MOLT incerts, ara com ara l’espai es considera un buit, excepte la petita quantitat de matèria normal que hi ha dins.
Per fer una beguda esportiva per a l'equip de futbol, Jaylen va omplir 9/10 d’un gran refrigerador amb aigua. Després, va omplir l'espai restant amb 6 tasses de concentrat de begudes esportives. Quants galons de begudes esportives va fer Jaylen?
3,75 galons 10/10 - 9/10 = 1/10 1/10 = espai restant, 1/10 = 6 "tasses" (6 "tasses") / ("tasses totals") = 1/10 Resoldre per tasses totals : "tasses totals" xx ((6c) / ("tasses totals")) = (1/10) xx "tasses totals" 6 "tasses" = ("tasses totals") / 10 10 xx (6 "tasses") = (("tasses totals") / 10) xx10 10 "6 tasses" = "tasses totals" tasses totals = 60 Ha realitzat 60 tasses de begudes esportives 16 tasses = 1 galó. 60 "tasses" xx (1 "galó") / (16 "tasses") = 3,75 &qu
Lisa, una empleat de càrrega amb experiència, pot omplir un cert ordre en 10 hores. Tom, un nou empleat, necessita 13 hores per fer el mateix treball. Treballant junts, quant de temps els trigarà a omplir la comanda?
Tots dos junts ompliran la comanda en 5,65 hores (2 dots). En 1 hora Lisa fa 1/10 de la comanda. En 1 hora Tom fa 1/13 de la comanda. En 1 hora tots dos junts fan (1/10 + 1/13) = (13 + 10) / 130 = 23/130 ª de la comanda. Tots dos junts fan una part de l'ordre de 23/130 a 1 hora. Per tant, tots dos junts faran l’ordre complet en 1 / (23/130) = 130/23 = 5,65 (2dp) hores. [Ans]
Una bomba pot omplir un tanc amb oli en 4 hores. Una segona bomba pot omplir el mateix dipòsit en 3 hores. Si s’utilitzen les dues bombes al mateix temps, quant de temps prendran per omplir el dipòsit?
1 5/7 hores La primera bomba pot omplir el dipòsit en 4 hores. Així, en 1 hora, omplirà 1/4 del tanc. La mateixa manera que la segona bomba omplirà 1 hora = 1/3 del tanc. Si les dues bombes s’utilitzen al mateix temps, després d’una hora ompliran 1/4 + 1/3 = [3 + 4] / 12 = 7/12 del dipòsit. Per tant, el tanc serà ple = 1 -: 7/12 = 12/7 = 1 5/7 hores