Resposta:
Si escrivim
Per tant, trobem
Així amplada
Explicació:
Deixar
Llavors la longitud a
Tan:
# 70 = w (w + 3) = w ^ 2 + 3w
Sostreure
# w ^ 2 + 3w-70 = 0 #
Hi ha diverses maneres de solucionar-ho, incloent-hi la fórmula quadràtica, però podem reconèixer que estem buscant un parell de factors de
No hauria de trigar molt a trobar-lo
# w ^ 2 + 3w-70 = (w-7) (w + 10) #
Tan
Com que estem parlant de longituds, podem ignorar la sortida negativa de la solució
L’àrea d’un rectangle és de 42 yd ^ 2 i la longitud del rectangle és de 11 yd menys de tres vegades l’amplada, com trobeu les dimensions de longitud i amplada?
Les dimensions són les següents: Ample (x) = 6 iardes Llarg (3x -11) = 7 iardes Àrea de rectangle = 42 metres quadrats. Deixeu l'amplada = x iardes. La longitud és de 11 metres menys que tres vegades l’ample: longitud = 3x -11 iardes. Àrea de rectangle = longitud xx amplada 42 = (3x-11) xx (x) 42 = 3x ^ 2 - 11x 3x ^ 2 - 11x- 42 = 0 Podem dividir el terme mitjà d’aquesta expressió per factoritzar-la i trobar així el solucions. 3x ^ 2 - 11x- 42 = 3x ^ 2 - 18x + 7x- 42 = 3x (x-6) + 7 (x-6) (3x-7) (x-6) són els factors que equivalem a zero per obtenir x Solució 1: 3x- 7 = 0
L'àrea d'un rectangle és de 65 yd ^ 2 i la longitud del rectangle és de 3 yd menys del doble de l'amplada. Com trobeu les dimensions del rectangle?
Text {Longitud} = 10, text {ample} = 13/2 Sigui L & B la longitud i l’amplada del rectangle i, per tant, segons la condició L = 2B-3 .......... 1) I l’àrea del rectangle LB = 65 que fixa el valor de L = 2B-3 de (1) a l’equació anterior, obtenim (2B-3) B = 65 2B ^ 2-3B-65 = 0 2B ^ 2-13B + 10B-65 = 0 B (2B-13) +5 (2B-13) = 0 (2B-13) (B + 5) = 0 2B-13 = 0 o B + 5 = 0 B = O B = -5 Però l’amplada del rectangle no pot ser negativa per tant B = 13/2 establint B = 13/2 en (1), obtenim L = 2B-3 = 2 (13) / 2) -3 = 10
Originalment, les dimensions d'un rectangle eren de 20 cm per 23 cm. Quan es van reduir les dues dimensions de la mateixa quantitat, la superfície del rectangle va disminuir en 120 cm². Com trobeu les dimensions del nou rectangle?
Les noves dimensions són: a = 17 b = 20 Àrea original: S_1 = 20xx23 = 460cm ^ 2 Nova àrea: S_2 = 460-120 = 340cm ^ 2 (20-x) xx (23-x) = 340 460-20x- 23x + x ^ 2 = 340 x ^ 2-43x + 120 = 0 Resolució de l'equació quadràtica: x_1 = 40 (descarregada perquè és superior a 20 i 23) x_2 = 3 Les noves dimensions són: a = 20-3 = 17 b = 23-3 = 20