Resposta:
Explicació:
Tenim
Com escriviu els termes d’expressió donats de i: sqrt (-45)?
El símbol especial i s’utilitza per representar l’arrel quadrada del negatiu 1, sqrt-1. Sabem que no hi ha tal cosa en l’univers del nombre real com el sqrt-1 perquè no hi ha dos nombres idèntics que podem multiplicar junts per obtenir: 1 com a resposta. 11 = 1 i -1-1 és també 1. 1bviament 1 * -1 = -1, però 1 i -1 no són el mateix nombre. Tots dos tenen la mateixa magnitud (distància des de zero), però no són idèntics. Així doncs, quan tenim un nombre que suposa una arrel quadrada negativa, les matemàtiques van desenvolupar un pla per evitar aquest problema d
Què és (sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5-) sqrt (3)) / (sqrt (3+) sqrt (3-) sqrt (5))?
2/7 Prenem, A = (sqrt5 + sqrt3) / (sqrt3 + sqrt3 + sqrt5) - (sqrt5-sqrt3) / (sqrt3 + sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5 -sqrt3) / (2sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5-sqrt3) / (2sqrt3-sqrt5) = ((sqrt5 + sqrt3) (2sqrt3-sqrt5) - (sqrt5-sqrt3) ) (2sqrt3 + sqrt5)) / ((2sqrt3 + sqrt5) (2sqrt3-sqrt5) = ((2sqrt15-5 + 2 * 3-sqrt15) - (2sqrt15 + 5-2 * 3-sqrt15)) / ((2sqrt3) ^ 2- (sqrt5) ^ 2) = (cancel·lar (2sqrt15) -5 + 2 * 3cancel (-sqrt15) - cancel·lar (2sqrt15) -5 + 2 * 3 + cancel·lar (sqrt15)) / (12-5) = ( -10 + 12) / 7 = 2/7 Tingueu en compte que si en els denomina
Com es diferencien sqrt (cos (x ^ 2 + 2)) + sqrt (cos ^ 2x + 2)?
(dy) / (dx) = (xsen (x ^ 2 + 2) + sen (x + 2)) / (sqrtcos (x ^ 2 + 2) + sqrt (cos ^ 2 (x + 2))) (dy) ) / (dx) = 1 / (2sqrtcos (x ^ 2 + 2) + sqrt (cos ^ 2 (x + 2))) * sen (x ^ 2 + 2) * 2x + 2sen (x + 2) (dy) ) / (dx) = (2xsen (x ^ 2 + 2) + 2sen (x + 2)) / (2sqrtcos (x ^ 2 + 2) + sqrt (cos ^ 2 (x + 2))) (dy) / (dx) = (cancel2 (xsen (x ^ 2 + 2) + sen (x + 2))) / (cancel2sqrtcos (x ^ 2 + 2) + sqrt (cos ^ 2 (x + 2))) (dy) / (dx) = (xsen (x ^ 2 + 2) + sen (x + 2)) / (sqrtcos (x ^ 2 + 2) + sqrt (cos ^ 2 (x + 2)))