Resposta:
Explicació:
# "l'equació d'una línia en" color (blau) "forma de intercepció de pendent" # és.
# • color (blanc) (x) y = mx + b #
# "on m és la inclinació i b la intercepció-y" #
# "aquí" m = 2 #
# rArry = 2x + blarrcolor (blau) "és l'equació parcial" #
# "per trobar el substitut b" (-1, -4) #
# "a l'equació parcial" #
# -4 = -2 + brArrb = -4 + 2 = -2 #
# rArry = 2x-2larrcolor (vermell) "equació en forma de intercepció de pendent" # gràfic {(y-2x + 2) ((x + 1) ^ 2 + (i + 4) ^ 2-0,04) = 0 -10, 10, -5, 5}
La línia L té l'equació 2x-3y = 5 i la Línia M passa pel punt (2, 10) i és perpendicular a la línia L. Com es determina l'equació de la línia M?
En forma de punt de pendent, l’equació de la línia M és y-10 = -3 / 2 (x-2). En forma d’interconnexió de talus, és y = -3 / 2x + 13. Per tal de trobar el pendent de la línia M, primer hem de deduir el pendent de la línia L. L'equació de la línia L és 2x-3y = 5. Això és en forma estàndard, que no ens explica directament la inclinació de L. Podem reordenar aquesta equació, però, en forma d’interconnexió de talus resolent y: 2x-3y = 5 color (blanc) (2x) -3y = 5-2x "" (restar 2x dels dos costats) color (blanc) (2x-3) y = (5-2x) /
Quina és l'equació de la línia que passa pel punt d'intersecció de les línies y = x i x + y = 6 i que és perpendicular a la línia amb l'equació 3x + 6y = 12?
La línia és y = 2x-3. Primer, trobeu el punt d’intersecció de y = x i x + y = 6 usant un sistema d’equacions: y + x = 6 => y = 6-xy = x => 6-x = x => 6 = 2x => x = 3 i ja que y = x: => y = 3 El punt d'intersecció de les línies és (3,3). Ara cal trobar una línia que travessi el punt (3,3) i sigui perpendicular a la línia 3x + 6y = 12. Per trobar la inclinació de la línia 3x + 6y = 12, converteix-la en forma d'intercepció de pendent: 3x + 6y = 12 6y = -3x + 12 y = -1 / 2x + 2 Així el pendent és -1/2. Les pendents de les línies perpen
Escriviu la forma de pendent de l'equació amb el pendent donat que passa pel punt indicat. A.) la línia amb pendent -4 que passa per (5,4). i també B.) la línia amb pendent 2 que passa per (-1, -2). si us plau, ajuda, això és confús?
Y-4 = -4 (x-5) "i" y + 2 = 2 (x + 1)> "és l'equació d'una línia en" color (blau) "forma punt-pendent". • color (blanc) (x) y-y_1 = m (x-x_1) "on m és el pendent i" (x_1, y_1) "un punt de la línia" (A) "donat" m = -4 "i "(x_1, y_1) = (5,4)" substituint aquests valors a l'equació dóna "y-4 = -4 (x-5) larrcolor (blau)" en forma de punt-pendent "(B)" donat "m = 2 "i" (x_1, y_1) = (- 1, -2) y - (- 2)) 2 (x - (- 1)) rArry + 2 = 2 (x + 1) larrcolor (blau) " en forma d