Resposta:
Vegeu a continuació els passos per resoldre aquest tipus de pregunta:
Explicació:
Normalment, amb una pregunta com aquesta, tindríem una línia per treballar que també passés pel punt donat. Com que no se'ns donen això, ho faré i després procediré a la pregunta.
Línia original (anomenat …)
Per trobar una línia que passi per un punt donat, podem utilitzar la forma de pendent punt d'una línia, la forma general de la qual és:
Vaig a establir
i puc expressar aquesta línia en forma de pendent de punt:
i forma estàndard:
Per trobar la nostra línia paral·lela, Faré servir la forma de pendent de punt:
Una línia perpendicular tindrà un pendent de
també conegut com el recíproc negatiu.
En el nostre cas, tenim el pendent original com a 2, de manera que el pendent perpendicular serà
Amb la inclinació i el punt que volem passar, fem servir la forma de pendent de punt:
Podem fer això en forma estàndard:
Podem trobar la intercepció x configurant
Gràficament, tot sembla així:
línia original:
gràfic {(2x-i-11) = 0}
línia perpendicular afegida:
gràfic {(2x-i-11) (x + 2y-3) = 0}
L’equació d’una línia és 2x + 3y - 7 = 0, trobem: - (1) pendent de la línia (2) l’equació d'una línia perpendicular a la línia donada i que passa per la intersecció de la línia x-y + 2 = 0 i 3x + y-10 = 0?
-3x + 2y-2 = 0 color (blanc) ("ddd") -> color (blanc) ("ddd") y = 3 / 2x + 1 Primera part de molts detalls que demostren com funcionen els primers principis. Un cop acostumats a aquestes i utilitzar dreceres, utilitzaràs molt menys línies. color (blau) ("Determineu la intercepció de les equacions inicials") x-y + 2 = 0 "" ....... Equació (1) 3x + y-10 = 0 "" .... Equació ( 2) Restar x dels dos costats de l'Eqn (1) donant -y + 2 = -x Multiplica els dos costats per (-1) + y-2 = + x "" .......... Equació (1_a ) Utilitzant Eqn (1_a
La forma de la inclinació puntual de l'equació de la línia que passa per (-5, -1) i (10, -7) és y + 7 = -2 / 5 (x-10). Quina és la forma estàndard de l’equació d’aquesta línia?
2 / 5x + y = -3 El format de la forma estàndard per a una equació d'una línia és Ax + Per = C. L'equació que tenim, y + 7 = -2/5 (x-10) es troba actualment en punt- forma de pendent. El primer que heu de fer és distribuir el -2/5 (x-10): y + 7 = -2/5 (x-10) i + 7 = -2 / 5x + 4 Ara restem 4 de tots dos costats de la equació: y + 3 = -2 / 5x Atès que l'equació ha de ser Ax + By = C, anem a moure 3 a l'altre costat de l'equació i -2 / 5x a l'altre costat de l'equació: 2 / 5x + y = -3 Aquesta equació es troba ara en forma estàndard.
La línia n passa a través dels punts (6,5) i (0, 1). Quina és la intercepció y de la línia k, si la línia k és perpendicular a la línia n i passa pel punt (2,4)?
7 és la intercepció y de la línia k Primer, trobem el pendent de la línia n. (1-5) / (0-6) (-4) / - 6 2/3 = m El pendent de la línia n és 2/3. Això vol dir que el pendent de la línia k, que és perpendicular a la línia n, és el recíproc negatiu de 2/3 o -3/2. Així, doncs, l’equació que tenim fins ara és: y = (- 3/2) x + b Per calcular la intercepció y o b, només heu de connectar (2,4) a l’equació. 4 = (- 3/2) (2) + b 4 = -3 + b 7 = b Així que la intercepció y és de 7