Resposta:
7/4
Explicació:
Deixar
Com es troba el límit de (sin (x)) / (5x) quan x s'apropa a 0?
El límit és 1/5. Donat lim_ (xto0) sinx / (5x) Sabem que el color (blau) (lim_ (xto0) sinx / (x) = 1 Així podem reescriure el nostre donat com: lim_ (xto0) [sinx / (x) * 1 / 5] 1/5 * lim_ (xto0) [sinx / (x)] 1/5 * 1 1/5
Com es troba el límit de (sin ^ 2 (x ^ 2)) / (x ^ 4) quan x s'apropa a 0?
1 Sigui f (x) = (sin ^ 2 (x ^ 2)) / x ^ 4 implica f '(x) = lim_ (x a 0) (sin ^ 2 (x ^ 2)) / x ^ 4 implica f '(x) = lim_ (x a 0) (sin (x ^ 2) * sin (x ^ 2)) / x ^ 4 = lim_ (x a 0) {sin (x ^ 2) / x ^ 2 * pecat (x ^ 2) / x ^ 2} = lim_ (x a 0) sin (x ^ 2) / x ^ 2lim_ (x a 0) sin (x ^ 2) / x ^ 2 * = 1 * 1 = 1
Com es troba el límit de [(sin x) * (sin ^ 2 x)] / [1 - (cos x)] quan x s'apropa a 0?
Realitzeu una multiplicació conjugada i simplifiqueu per obtenir lim_ (x-> 0) (sinx * sin ^ 2x) / (1-cosx) = 0 La substitució directa produeix una forma indeterminada 0/0, així que haurem de provar alguna cosa més. Intenteu multiplicar (sinx * sin ^ 2x) / (1-cosx) per (1 + cosx) / (1 + cosx): (sinx * sin ^ 2x) / (1-cosx) * (1 + cosx) / (1 + cosx) = (sinx * sin ^ 2x (1 + cosx)) / ((1-cosx) (1 + cosx)) = (sinx * sin ^ 2x (1 + cosx)) / (1-cos ^ 2x) Aquesta tècnica es coneix com a multiplicació conjugada i funciona gairebé cada vegada. La idea és utilitzar la propietat de diferèn