Resposta:
Explicació:
Primer, dividim l’hexàgon en 6 triangles d’isocel·les iguals, cadascun té els angles (
Resposta:
Explicació:
La suma interna de quatre triangles és
O, es pot calcular directament mitjançant la fórmula directa,
En cas d’hexàgon,
Així, sumen els angles interns
Suposem que un cercle de radi r està inscrit en un hexàgon. Quina és la zona de l’hexàgon?
L'àrea d'un hexàgon regular amb un radi del cercle inscrit r és S = 2sqrt (3) r ^ 2 lybviament, es pot considerar un hexàgon regular que consta de sis triangles equilàters amb un vèrtex comú al centre d'un cercle inscrit. L’altitud de cadascun d’aquests triangles és igual a r. La base de cada un d’aquests triangles (un costat d’un hexàgon que és perpendicular a un radi d’altitud) és igual a r * 2 / sqrt (3). Per tant, una àrea d’aquest triangle és igual a (1/2) * (r * 2 / sqrt (3)) * r = r ^ 2 / sqrt (3) L'àrea d'un hexàgon sence
El perímetre d’un hexàgon regular és de 48 polzades. Quin és el nombre de polzades quadrades en la diferència positiva entre les àrees del cercle circumscrit i els cercles inscrits del hexàgon? Expresseu la vostra resposta en termes de pi.
Color (blau) ("Àrea de diferència entre cercles circumscrits i cercles inscrits" (verd) (A_d = pi R ^ 2 - pi r ^ 2 = 36 pi - 27 pi = 9pi perímetre "quadrat quadrat" d 'hexàgon regular P = 48 "polzada" Lateral de l'hexàgon a = P / 6 = 48/6 = 6 "polzada" L'hexàgon regular consta de 6 triangles equilàters de costat a cadascun. Cercle inscrit: radi r = a / (2 tan theta), theta = 60 / 2 = 30 ^ @ r = 6 / (2 tan (30)) = 6 / (2 (1 / sqrt3)) = 3 sqrt 3 "polzada" "àrea del cercle inscrit" A_r = pi r ^ 2 = pi ( 3 sqrt3) ^ 2
Triangle XYZ és isòsceles. Els angles base, angle X i angle Y, són quatre vegades la mesura de l'angle de vèrtex, angle Z. Quina és la mesura de l'angle X?
Configureu dues equacions amb dues incògnites. Trobareu X i Y = 30 graus, Z = 120 graus. Ja sabeu que X = Y, això vol dir que podeu substituir Y per X o viceversa. Podeu calcular dues equacions: ja que hi ha 180 graus en un triangle, això significa: 1: X + Y + Z = 180 Substituït Y per X: 1: X + X + Z = 180 1: 2X + Z = 180 Nosaltres també pot fer una altra equació basada en que l’angle Z és 4 vegades més gran que l’angle X: 2: Z = 4X Ara, posem l’equació 2 en l’equació 1 substituint Z per 4x: 2X + 4X = 180 6X = 180 X = 30 Inserció aquest valor de X en la primera o la se