L'àrea del trapezi és de 56 unitats ². La longitud superior és paral·lela a la longitud inferior. La longitud superior és de 10 unitats i la longitud inferior és de 6 unitats. Com trobaria l’altura?
Àrea del trapezi = 1/2 (b_1 + b_2) xxh Utilitzant la fórmula d’àrea i els valors donats al problema ... 56 = 1/2 (10 + 6) xxh Ara resoldreu per h ... h = 7 unitats esperança que va ajudar
Les bases d’un trapezi són 10 unitats i 16 unitats, i la seva àrea és de 117 unitats quadrades. Quina és l'alçada d'aquest trapezi?
L’alçada del trapezoide és 9 L’àrea A d’un trapezi amb bases b_1 i b_2 i l’altura h es dóna per A = (b_1 + b_2) / 2h Resolució de h, tenim h = (2A) / (b_1 + b_2) Introduint els valors donats ens dóna h = (2 * 117) / (10 + 16) = 234/26 = 9
Dos angles formen un parell lineal. La mesura de l’angle més petit és la meitat de la mesura de l’angle més gran. Quin és el grau de mesura del major angle?
120 ^ @ Angles en un parell lineal formen una línia recta amb un grau de mesura total de 180 ^ @. Si l’angle més petit del parell és la meitat de la mesura de l’angle més gran, podem relacionar-los com a tals: Angle més petit = x ^ Angle més gran = 2x ^ @ Atès que la suma dels angles és de 180 ^ @, podem dir que x + 2x = 180. Això simplifica a ser 3x = 180, de manera que x = 60. Així, l’angle més gran és (2xx60) ^ @ o 120 ^ @.