Resposta:
El producte transversal de
Explicació:
Vector donat
On, per la regla de Sarrus,
Aquest procés sembla bastant complicat, però en realitat no és tan dolent quan ho feu.
Tenim vectors
Això dóna una matriu en forma de:
Per trobar el producte creuat, primer imagineu-vos que cobreix el producte
Ara imagineu que cobreix la imatge
Finalment, imagineu-vos que cobreix la imatge
Per tant, el producte creuat és
Quin és el producte creuat de [0,8,5] i [1,2, -4]?
[0,8,5] xx [1,2, -4] = [-42,5, -8] El producte creuat de vecA i vecB és donat per vecA xx vecB = || vecA || * || vecB || * sin (theta) hatn, on theta és l'angle positiu entre vecA i vecB, i hatn és un vector unitari amb la direcció donada per la regla de la mà dreta. Per als vectors unitaris hati, hatj i hatk en les direccions de x, y i z respectivament, color (blanc) ((color (negre) {hati xx hati = vec0}, color (negre) {qquad hati xx hatj = hatk} , color (negre) {qquad hati xx hatk = -hatj}), (color (negre) {hatj xx hati = -hatk}, color (negre) {qquad hatj xx hatj = vec0}, color (negre) {qquad
Quin és el producte creuat de [-1,0,1] i [0,1,2]?
El producte creuat és = 〈- 1,2, -1〉 El producte creuat es calcula amb el determinant | (veci, vecj, veck), (d, e, f), (g, h, i) | on 〈d, e, f〉 i 〈g, h, i〉 són els 2 vectors Aquí, tenim veca = 〈- 1,0,1〉 i vecb = 〈0,1,2〉 Per tant, | (veci, vecj, veck), (-1,0,1), (0,1,2) | = veci | (0,1), (1,2) | -vecj | (-1,1), (0,2) | + veck | (-1,0), (0,1) | = veci (-1) -vecj (-2) + veck (-1) = 〈- 1,2, -1〉 = verificació vecc fent dos productes de punt 〈-1,2, -1〉. 〈- 1, 0,1〉 = 1 + 0-1 = 0 ,2 -1,2, -1〉. 〈0,1,2〉 = 0 + 2-2 = 0 Així, vecc és perpendicular a veca i vecb
Quin és el producte creuat de [-1,0,1] i [3, 1, -1]?
[-1,2, -1] Sabem que vecA xx vecB = || vecA || * || vecB || * sin (theta) hatn, on hatn és un vector unitari donat per la regla de la mà dreta. Així, per als vectors unitaris hati, hatj i hatk en la direcció de x, y i z respectivament, podem arribar als resultats següents. color (blanc) ((color (negre) {hati xx hati = vec0}, color (negre) {qquad hati xx hatj = hatk}, color (negre) {qquad hati xx hatk = -hatj}), (color (negre) ) {hatj xx hati = -hatk}, color (negre) {qquad hatj xx hatj = vec0}, color (negre) {qquad hatj xx hatk = hati}), (color (negre) {hatk xx hati = hatj}, color (negre) {qquad hat