Procés:
1.)
Primer, reescriurem l’equació amb una forma més fàcil de treballar.
Prengui el cosecant de tots dos costats:
2.)
Reescriu en termes de sinus:
3.)
Resoldre per
4.)
5.)
6.)
Ara, prendre la derivada hauria de ser més fàcil. Ara només és una qüestió de regla de cadena.
Ho sabem
Així doncs, prenem la derivada de la funció externa, després multipliqueu-la per la derivada
7.)
La derivada de
8.)
Simplificant 8. ens dóna:
9.)
Per fer la declaració una mica més bonica, podem aportar el quadrat de
10.)
Simplificació dels rendiments:
11.)
I hi ha la nostra resposta. Recordeu que els problemes derivats que impliquen funcions de derivació inversa són, sobretot, un exercici del vostre coneixement de les identitats trigonometre. Utilitzeu-los per trencar la funció en un formulari fàcil de diferenciar.
Què és la primera derivada i la segona derivada de 4x ^ (1/3) + 2x ^ (4/3)?
(dy) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) "(la primera derivada)" (d ^ 2 y) / (dt ^ 2 ) = 8/9 * x ^ (- 2/3) (- x ^ -1 + 1) "(la segona derivada)" y = 4x ^ (1/3) + 2x ^ (4/3) (dy) / (dx) = 1/3 * 4 * x ^ ((1 / 3-1)) + 4/3 * 2x ^ ((4 / 3-1)) (dy) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) "(la primera derivada)" (d ^ 2 y) / (dt ^ 2) = - 2/3 * 4/3 * x ^ ((- 2 / 3-1)) + 8/3 * 1/3 * x ^ ((1 / 3-1)) (d ^ 2 i) / (dt ^ 2) = - 8/9 * x ^ ((- 5/3)) + 8/9 * x ^ ((- 2/3) (d ^ 2 i) / (dt ^ 2) = 8/9 * x ^ (- 2/3) (- x ^ -1 + 1) "(la segona derivada)"
Quina és la segona derivada de x / (x-1) i la primera derivada de 2 / x?
Pregunta 1 Si f (x) = (g (x)) / (h (x)) llavors per la regla quocient f '(x) = (g' (x) * h (x) - g (x) * h '(x)) / ((g (x)) ^ 2) Així doncs, si f (x) = x / (x-1) llavors la primera derivada f' (x) = ((1) (x-1) - (x) (1)) / x ^ 2 = - 1 / x ^ 2 = - x ^ (- 2) i la segona derivada és f '' (x) = 2x ^ -3 pregunta 2 Si f (x) = 2 / x es pot tornar a escriure com f (x) = 2x ^ -1 i utilitzar procediments estàndard per prendre la derivada f '(x) = -2x ^ -2 o, si preferiu f' (x) = - 2 / x ^ 2
Quina és la primera derivada i la segona derivada de x ^ 4 - 1?
F ^ '(x) = 4x ^ 3 f ^' '(x) = 12x ^ 2 per trobar la primera derivada simplement hem d’utilitzar tres regles: 1. Regla de poder d / dx x ^ n = nx ^ (n-1) ) 2. Regla constant d / dx (c) = 0 (on c és un enter i no una variable) 3. Regla de suma i diferència d / dx [f (x) + - g (x)] = [f ^ ' (x) + - g ^ '(x)] la primera derivada dóna com a resultat: 4x ^ 3-0 el que simplifica a 4x ^ 3 per trobar la segona derivada, hem de derivar la primera derivada aplicant de nou la regla de potència que resulta en : 12x ^ 3 podeu continuar si voleu: tercer derivat = 36x ^ 2 quart derivat = 72x cinqu