Resposta:
Qualsevol que sigui la relació amb la que estiguis més còmode. Per exemple:
Explicació:
Podeu utilitzar qualsevol de les sis funcions trigonomètriques estàndard per trobar
Recordeu que el sinus d’un angle
També podeu veure la funció arcsina escrita com
És important entendre la relació entre sinus i arcsina. Digues que ho tingueu
Per cosinus, utilitzaríeu el mateix procés. Només recordeu el cosinus d’un angle és el costat adjacent a l’angle dividit per la hipotenusa del triangle. Al diagrama, el costat adjacent és
Així que si
Per respondre directament a la vostra pregunta, es pot utilitzar qualsevol funció trig
Resposta:
Explicació:
Afegint-se a la resposta de Ken, també podem utilitzar el tangent de l’angle.
Des de
El punt (-4, -3) es troba en un cercle el centre de la qual es troba a (0,6). Com es troba una equació d'aquest cercle?
X ^ 2 + (y-6) ^ 2 = 109 Si el cercle té un centre a (0,6) i (-4, -3) és un punt de la seva circumferència, llavors té un radi de: color (blanc ) ("XXX") r = sqrt ((0 - (- 3)) ^ 2+ (6 - (- 4)) ^ 2) = sqrt (109) la forma estàndard per a un cercle amb centre (a, b) i el radi r és el color (blanc) ("XXX") (xa) ^ 2 + (yb) ^ 2 = r ^ 2. En aquest cas tenim color (blanc) ("XXX") x ^ 2 + (i-6 ) ^ 2 = 109 graf {x ^ 2 + (i-6) ^ 2 = 109 [-14,24, 14,23, -7,12, 7,11]}
Jenna està volant una cometa en un dia molt vent. La cadena de cometa fa un angle de 60 amb el terra. L’estel es troba directament a sobre de la caixa de sorra, que es troba a 28 peus d’on es troba Jenna. Aproximadament quina part de la cadena de cometes s’utilitza actualment?
La longitud de la cadena de cometes en ús és de 56 peus. Deixeu que la longitud de la cadena sigui L Aquesta és la mnemotècnica que faig servir per a les relacions de trigues. Sona com a Sew Car Tower i està escrit com "Soh" -> sin = ("oposat") / ("hipotenusa") "Cah" -> cos = ("adjacent") / ("hipotenusa") "Toa" -> tan = ("oposat") / ("adjacent") ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ El nostre triangle té adjacent i hipotenusa, de manera que fem servir el cosinus cos (60 ^ 0) = ("
Mostrar que, (1 + cos theta + i * sin theta) ^ n + (1 + cos theta - i * sin theta) ^ n = 2 ^ (n + 1) * (cos theta / 2) ^ n * cos ( n * theta / 2)?
Si us plau mireu més a baix. Sigui 1 + costheta + isintheta = r (cosalpha + isinalpha), aquí r = sqrt ((1 + costheta) ^ 2 + sin ^ 2theta) = sqrt (2 + 2costheta) = sqrt (2 + 4cos ^ 2 (theta / 2 ) -2) = 2cos (theta / 2) i tanalpha = sintheta / (1 + costheta) == (2sin (theta / 2) cos (theta / 2)) / (2cos ^ 2 (theta / 2)) = tan (theta / 2) o alpha = theta / 2 llavors 1 + costheta-isintheta = r (cos (-alpha) + isin (-alpha)) = r (cosalpha-isinalpha) i podem escriure (1 + costheta + isintheta) ^ n + (1 + costheta-isintheta) ^ n usant el teorema de DE MOivre com r ^ n (cosnalpha + isinnalpha + cosnalpha-isinnalpha) = 2r