Resposta:
La longitud de la diagonal és
Explicació:
Donat:
Un quadrat
Què hem de trobar?
Necessitem trobar la longitud de la diagonal.
Propietats d’una plaça:
-
Totes les magnituds dels costats d’una casella són congruents.
-
Tots els quatre angles interns són congruents, angle =
#90^@# -
Quan dibuixem una diagonal, tal com es mostra a continuació, tindrem un triangle dret, sent la diagonal la hipotenusa.
Observeu-ho
Se'ns dóna l'àrea de la plaça.
El podem trobar costat de la plaça, utilitzant la fórmula d’àrea.
Àrea d'un quadrat:
Com que tots els costats tenen magnituds iguals, podem considerar qualsevol costat per al càlcul.
Atès que tots els costats són iguals,
Per tant, ho observem
Penseu en el triangle dret
Teorema de Pitàgores:
Utilitzant la calculadora,
Per tant, la longitud de la diagonal (BC) és aproximadament igual a
Espero que ajudi.
Resposta:
14
Explicació:
El costat és l'arrel quadrada de la zona
S =
La diagonal és la hipòtesi d’un triangle dret format pels dos costats
On C = la diagonal A =
tan
això dóna
La diagonal és de 14
La longitud d'una caixa és de 2 centímetres menys que la seva alçada. l'amplada de la caixa és de 7 centímetres més que la seva alçada. Si la caixa tenia un volum de 180 centímetres cúbics, quina és la seva superfície?
Deixeu que l'alçada de la caixa sigui h cm Llavors la seva longitud serà (h-2) cm i la seva amplada serà (h + 7) cm, així que per la condició del problema (h-2) xx (h + 7) xxh = 180 => (h ^ 2-2h) xx (h + 7) = 180 => h ^ 3-2h ^ 2 + 7h ^ 2-14h-180 = 0 => h ^ 3 + 5h ^ 2-14h- 180 = 0 Per a h = 5 LHS es fa zero Per tant (h-5) és el factor de LHS, de manera que h ^ 3-5h ^ 2 + 10h ^ 2-50h + 36h-180 = 0 => h ^ 2 (h-5) + 10h (h-5) +36 (h-5) = 0 => (h-5) (h ^ 2 + 10h + 36) = 0 Així l'alçada h = 5 cm Ara longitud = (5-2) = 3 cm Ample = 5 + 7 = 12 cm Així que la super
La longitud de cada costat del quadrat A s'incrementa en un 100 per cent per fer quadrat B. Llavors cada costat del quadrat s'incrementa en un 50 per cent per fer el quadrat C. Per quin percentatge és l'àrea del quadrat C major que la suma de les àrees de quadrat A i B?
L'àrea de C és un 80% superior a la superfície de l'àrea A + de B Definir com a unitat de mesura la longitud d’un costat d’A. Àrea d = 1 ^ 2 = 1 sq.unit La longitud dels costats de B és 100% més que la longitud dels costats d’A rarr. Longitud dels costats de B = 2 unitats. Àrea de B = 2 ^ 2 = 4 unitats quadrades. La longitud dels costats de C és un 50% més que la longitud dels costats de B rarr. Longitud de costats de C = 3 unitats. Àrea de C = 3 ^ 2 = 9 metres quadrats. L'àrea de C és 9- (1 + 4) = 4 unitats superiors a les àrees combinades d
José necessita un tub de coure de 5/8 metres de longitud per completar un projecte. Quina de les següents longituds de canonada es pot tallar a la longitud requerida amb la menor longitud de canonada que queden? 9/16 metres. 3/5 metres. 3/4 metres. 4/5 metres. 5/6 metres.
3/4 metres. La manera més senzilla de resoldre'ls és que tots comparteixin un denominador comú. No entraré en els detalls de com fer-ho, però serà de 16 * 5 * 3 = 240. Convertir-les totes en un "denominador 240", obtenim: 150/240, i tenim: 135 / 240,144 / 240,180 / 240,192 / 240,200 / 240. Atès que no podem utilitzar un tub de coure més curt que la quantitat que desitgem, podem eliminar 9/16 (o 135/240) i 3/5 (o 144/240). La resposta serà, òbviament, de 180/240 o 3/4 metres de canonada.