Resposta:
4
Explicació:
El nombre d’elements del conjunt de potències de qualsevol conjunt A és
En el nostre cas, el conjunt S té dos elements: a saber
- el número 2
- el conjunt {1,4}
Així, el seu conjunt de potències té
Atès que es tracta d’un petit conjunt, podem escriure l’energia amb poc esforç:
Nota: el tercer element és el conjunt de potències anteriors: a singleton set - l’únic element del qual és el conjunt
La suma de dos números consecutius és de 77. La diferència de la meitat del nombre més petit i un terç del nombre més gran és 6. Si x és el nombre més petit i y és el nombre més gran, que dues equacions representen la suma i la diferència de els números?
X + y = 77 1 / 2x-1 / 3y = 6 Si voleu conèixer els números que podeu seguir llegint: x = 38 y = 39
Nick pot llançar un beisbol tres vegades més que el nombre de peus, f, que Jeff pot llançar el beisbol. Quina és l’expressió que es pot utilitzar per trobar el nombre de peus que Nick pot llançar a la pilota?
4f +3 Atès que, el nombre de peus que Jeff pot llançar al beisbol és que Nick pot llançar un beisbol tres més de quatre vegades el nombre de peus. 4 vegades el nombre de peus = 4f i tres més que això serà 4f + 3 Si el nombre de vegades que Nick pot llançar el beisbol és donat per x, llavors, l'expressió que es pot utilitzar per trobar el nombre de peus que Nick pot llençar la pilota serà: x = 4f +3
Mostrar que totes les seqüències poligonals generades per la sèrie de seqüències aritmètiques amb diferències comunes d, d en ZZ són seqüències poligonals que poden generar a_n = an ^ 2 + bn + c?
A_n = P_n ^ (d + 2) = an ^ 2 + b ^ n + c amb a = d / 2; b = (2-d) / 2; c = 0 P_n ^ (d + 2) és una sèrie poligonal de rang, r = d + 2 exemple donada una seqüència aritmètica que comptar per d = 3 tindreu un color (vermell) (pentagonal): P_n ^ color ( vermell) 5 = 3 / 2n ^ 2-1 / 2n donant P_n ^ 5 = {1, color (vermell) 5, 12, 22,35,51, cdots} Es construeix una seqüència poligonal prenent la enèsima suma d’una aritmètica seqüència. En el càlcul, seria una integració. Així doncs, la hipòtesi clau aquí és: donat que la seqüència aritm&