suposem que l’equació de la línia requerida és
Ara, el pendent de l’equació donada
Si, la nostra recta requerida ha de ser perpendicular a la línia d’avió donada, podem dir,
Tan,
Així doncs, hem trobat el pendent de la nostra línia, de manera que podem posar-la i escriure com,
Ara, atès que aquesta línia passa pel punt
Per tant, podem posar el valor per determinar l’interconnexió, tan,
o,
Per tant, l’equació de la nostra línia es converteix,
L’equació d’una línia és 2x + 3y - 7 = 0, trobem: - (1) pendent de la línia (2) l’equació d'una línia perpendicular a la línia donada i que passa per la intersecció de la línia x-y + 2 = 0 i 3x + y-10 = 0?
-3x + 2y-2 = 0 color (blanc) ("ddd") -> color (blanc) ("ddd") y = 3 / 2x + 1 Primera part de molts detalls que demostren com funcionen els primers principis. Un cop acostumats a aquestes i utilitzar dreceres, utilitzaràs molt menys línies. color (blau) ("Determineu la intercepció de les equacions inicials") x-y + 2 = 0 "" ....... Equació (1) 3x + y-10 = 0 "" .... Equació ( 2) Restar x dels dos costats de l'Eqn (1) donant -y + 2 = -x Multiplica els dos costats per (-1) + y-2 = + x "" .......... Equació (1_a ) Utilitzant Eqn (1_a
La línia L té l'equació 2x-3y = 5 i la Línia M passa pel punt (2, 10) i és perpendicular a la línia L. Com es determina l'equació de la línia M?
En forma de punt de pendent, l’equació de la línia M és y-10 = -3 / 2 (x-2). En forma d’interconnexió de talus, és y = -3 / 2x + 13. Per tal de trobar el pendent de la línia M, primer hem de deduir el pendent de la línia L. L'equació de la línia L és 2x-3y = 5. Això és en forma estàndard, que no ens explica directament la inclinació de L. Podem reordenar aquesta equació, però, en forma d’interconnexió de talus resolent y: 2x-3y = 5 color (blanc) (2x) -3y = 5-2x "" (restar 2x dels dos costats) color (blanc) (2x-3) y = (5-2x) /
Quina és l'equació de la línia que passa pel punt d'intersecció de les línies y = x i x + y = 6 i que és perpendicular a la línia amb l'equació 3x + 6y = 12?
La línia és y = 2x-3. Primer, trobeu el punt d’intersecció de y = x i x + y = 6 usant un sistema d’equacions: y + x = 6 => y = 6-xy = x => 6-x = x => 6 = 2x => x = 3 i ja que y = x: => y = 3 El punt d'intersecció de les línies és (3,3). Ara cal trobar una línia que travessi el punt (3,3) i sigui perpendicular a la línia 3x + 6y = 12. Per trobar la inclinació de la línia 3x + 6y = 12, converteix-la en forma d'intercepció de pendent: 3x + 6y = 12 6y = -3x + 12 y = -1 / 2x + 2 Així el pendent és -1/2. Les pendents de les línies perpen