Resposta:
Això és cert per als tres enters parells positius consecutius.
Explicació:
Deixeu ser els tres sencers enters consecutius
Com la suma dels més petits, és a dir.
és a dir.
és a dir.
Per tant, l’afirmació que la suma dels més petits i el doble del segon és més que la tercera, és cert per als tres enters positius consecutius.
Tres sencers sencers consecutius són tals que el quadrat del tercer és 76 més que el quadrat del segon. Com es poden determinar els tres enters?
16, 18 i 20. Es poden expressar els tres nombres parells consecutius com a 2x, 2x + 2 i 2x + 4. Se us dóna (2x + 4) ^ 2 = (2x + 2) ^ 2 +76. L’expansió dels termes quadrats produeix 4x ^ 2 + 16x + 16 = 4x ^ 2 + 8x + 4 + 76. Restant 4x ^ 2 + 8x + 16 de tots dos costats de l'equació rendeix 8x = 64. Així, x = 8. Substituint 8 per x en 2x, 2x + 2 i 2x + 4, dóna 16,18 i 20.
Conèixer la fórmula a la suma dels N enters A) quina és la suma dels primers ners enters consecutius quadrats, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Suma dels primers N sers sencers consecutius Sigma_ (k = 1) ^ N k ^ 3?
Per a S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Tenim sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 resolent per a suma_ {i = 0} ^ ni ^ 2 suma {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni però sum_ {i = 0} ^ ni = ((n + 1) n) / 2 així que sum_ {i = 0} ^ ni ^ 2 =
Què són tres sencers enters consecutius tals que la suma del primer i el doble del segon és 20 més que la tercera?
10, 12, 14 Sigui x el més petit dels 3 enters => el segon sencer és x + 2 => el nombre sencer més gran és x + 4 x + 2 (x + 2) = x + 4 + 20 => x + 2x + 4 = x + 24 => 3x + 4 = x + 24 => 2x = 20 => x = 10 => x + 2 = 12 => x + 4 = 14 #