Resposta:
La longitud del rectangle és
Explicació:
Per definició, els angles d’un rectangle tenen raó. Per tant, dibuixar una diagonal crea dos triangles drets congruents. La diagonal del rectangle és la hipotenusa del triangle dret. Els costats del rectangle són les cames del triangle dret. Podem utilitzar el teorema de Pitàgores per trobar el costat desconegut del triangle dret, que és també la longitud desconeguda del rectangle.
Recordem que el teorema de Pitàgores indica que el sol dels quadrats de les cames d’un triangle dret és igual al quadrat de la hipotenusa.
Atès que la longitud del costat és una distància mesurada, l’arrel negativa no és un resultat raonable. Així, la longitud del rectangle és
L’àrea d’un rectangle es dóna multiplicant l’amplada per la longitud.
La diagonal d'un rectangle és de 13 polzades. La longitud del rectangle és de 7 polzades més que la seva amplada. Com es troba la longitud i l’amplada del rectangle?
Anomenem l’amplada x. Llavors la longitud és x + 7 La diagonal és la hipotenusa d'un triangle rectangular. Així: d ^ 2 = l ^ 2 + w ^ 2 o (omplint el que sabem) 13 ^ 2 = 169 = (x + 7) ^ 2 + x ^ 2 = x ^ 2 + 14x + 49 + x ^ 2 -> 2x ^ 2 + 14x-120 = 0-> x ^ 2 + 7x-60 = 0 Una equació quadràtica simple que es resol a: (x + 12) (x-5) = 0-> x = -12orx = 5 només la solució positiva es pot utilitzar així: w = 5 i l = 12 extra: el triangle (5,12,13) és el segon triangle pitagòric més senzill (on tots els costats són nombres sencers). El més simple és (3
La longitud d’un rectangle és 3 vegades la seva amplada. Si la longitud s’incrementés en 2 polzades i l’amplada per 1 polzada, el nou perímetre seria de 62 polzades. Quina és l'amplada i la longitud del rectangle?
La longitud és de 21 i l'amplada és de 7 Utilitzeu l per a longitud i w per a amplada Primer es dóna que l = 3w Nova longitud i amplada és l + 2 i w + 1 respectivament. També el nou perímetre és 62. Així, l + 2 + l + 2 + w + 1 + w + 1 = 62 o, 2l + 2w = 56 l + w = 28 Ara tenim dues relacions entre l i w Substituïm el primer valor de l en la segona equació. Obtindrem, 3w + w = 28 4w = 28 w = 7 Posant aquest valor de w en una de les equacions, l = 3 * 7 l = 21 Així la longitud és 21 i l'amplada és 7
El perímetre d'un triangle és de 29 mm. La longitud del primer costat és el doble de la longitud del segon costat. La longitud del tercer costat és de 5 més que la longitud del segon costat. Com trobeu les longituds laterals del triangle?
S_1 = 12 s_2 = 6 s_3 = 11 El perímetre d'un triangle és la suma de les longituds de tots els seus costats. En aquest cas, es dóna que el perímetre és de 29 mm. Per tant, per a aquest cas: s_1 + s_2 + s_3 = 29 Així, resolent la longitud dels costats, traduïm les declaracions en forma d’equació. "La longitud de la 1a cara és el doble de la longitud del segon costat" Per resoldre-ho, assignem una variable aleatòria a s_1 o s_2. Per a aquest exemple, deixaria x la longitud del segon costat per evitar tenir fraccions a la meva equació. Així que sabem que: