Resposta:
Explicació:
Tingueu en compte que la directriu és una línia horitzontal
Per tant, la paràbola és el tipus que obre cap amunt o cap avall; la forma de vèrtex de l’equació d’aquest tipus és:
On?
La coordenada x del vèrtex és la mateixa que la coordenada x del focus:
Substituïu
La coordenada y del vèrtex està a mig camí entre la directriu i el focus:
Substituïu
L’equació per trobar el valor de
Substituïu
Simplifica la fracció:
Amplieu el quadrat:
Distribuïu la fracció:
Combina termes com:
Resposta:
Explicació:
Resoldrem això Problema utilitzant el següent Focus-Directrix
Propietat (FDP) del Paràbola.
FDP: Qualsevol punt a Paràbola és equidistant des del
Focus i la Directrix.
Deixeu, el punt
el Focus i la Directrix del Paràbola, dir S.
Deixar,
Llavors, utilitzant el Formula de distància tenim, la distància,
Sabent que
Per FDP,
com Respectat Douglas K. Senyor ja ha derivat!
Gaudeix de les matemàtiques.
Quina és l’equació en forma estàndard de la paràbola amb un focus a (-10,8) i una directriu de y = 9?
L’equació de la paràbola és (x + 10) ^ 2 = -2y + 17 = -2 (i-17/2) Qualsevol punt (x, y) de la paràbola és equidistant del focus F = (- 10,8 ) i la directriu y = 9 Per tant, sqrt ((x + 10) ^ 2 + (i-8) ^ 2) = y-9 (x + 10) ^ 2 + (y-8) ^ 2 = (y- 9) ^ 2 (x + 10) ^ 2 + y ^ 2-16y + 64 = y ^ 2-18y + 81 (x + 10) ^ 2 = -2y + 17 = -2 (y-17/2) gràfic {((x + 10) ^ 2 + 2y-17) (y-9) = 0 [-31,08, 20,25, -9,12, 16,54]}
Quina és l’equació en forma estàndard de la paràbola amb un focus a (10, -9) i una directriu de y = -14?
Y = x ^ 2 / 10-2x-3/2 del focus donat (10, -9) i de l'equació de directrix y = -14, calcula pp = 1/2 (-9--14) = 5/2 calcula el vèrtex (h, k) h = 10 i k = (- 9 + (- 14)) / 2 = -23 / 2 vèrtex (h, k) = (10, -23/2) Utilitzeu la forma de vèrtex (xh ) ^ 2 = + 4p (yk) positiu 4p perquè s'obre cap amunt (x-10) ^ 2 = 4 * (5/2) (i - 23/2) (x-10) ^ 2 = 10 (i + 23/2) x ^ 2-20x + 100 = 10y + 115 x ^ 2-20x-15 = 10y y = x ^ 2 / 10-2x-3/2 la gràfica de y = x ^ 2 / 10-2x- 3/2 i la directriu y = -14 gràfica {(yx ^ 2/10 + 2x + 3/2) (y + 14) = 0 [-35,35, -25,10]}
Quina és l’equació en forma estàndard de la paràbola amb un focus a (-10, -9) i una directriu de y = -4?
L’equació de paràbola és y = -1/10 (x + 10) ^ 2 -6,5 El focus està a la directriu (-10, -9): y = -4. El vèrtex és a mig punt entre el focus i el directrix. Així, el vèrtex es troba a (-10, (-9-4) / 2) o (-10, -6.5) i la paràbola s'obre cap avall (a = -ive). L'equació de paràbola és y = a (xh) ^ 2 = k o y = a (x - (- 10)) ^ 2+ (-6,5) o y = a (x + 10) ^ 2 -6,5 on (h, k) és el vèrtex. La distància entre vèrtex i directrix, d = 6.5-4.0 = 2.5 = 1 / (4 | a |):. a = -1 / (4 * 2.5) = -1/10 Per tant, l'equació de paràbola és y