Quan tingueu el poder més alt
Quan la major potència és
Quan ho és
Resposta:
Equacions lineals
Explicació:
Quan hi ha una línia (vegeu l'exemple) sense cap canvi de pendent es defineix com a lineal:
Quan x és zero, y és 3.
Quan x és 1, y és 5.
Quan x és 2, y és 7.
Com podeu veure, la inclinació és 2.
Aquest és un exemple d’equació lineal. No hi ha cap tipus d’energia ni un altre tipus (com ara log o ln) en l’equació.
gràfic {2x + 3 -10, 10, -5, 5}
Tomas va escriure l'equació y = 3x + 3/4. Quan Sandra va escriure la seva equació, van descobrir que la seva equació tenia totes les mateixes solucions que l'equació de Tomás. Quina equació podria ser de Sandra?
4y = 12x +3 12x-4y +3 = 0 Una equació es pot donar en moltes formes i encara significa el mateix. y = 3x + 3/4 "" (conegut com a forma de pendent / intercepció.) Multiplicat per 4 per eliminar la fracció que dóna: 4y = 12x +3 "" rarr 12x-4y = -3 "" (forma estàndard) 12x- 4y +3 = 0 "" (forma general) Totes es troben en la forma més senzilla, però també podríem tenir variacions infinites. 4y = 12x + 3 es podria escriure com: 8y = 24x +6 "" 12y = 36x +9, 20y = 60x +15 etc
Sigui f la funció lineal tal que f (-1) = - 2 i f (1) = 4. Trobeu una equació per a la funció lineal f i després el graf y = f (x) a la graella de coordenades?
Y = 3x + 1 Atès que f és una funció lineal, és a dir, una línia tal que f (-1) = - 2 i f (1) = 4, això significa que passa per (-1, -2) i (1,4) ) Tingueu en compte que només una línia pot passar per dos punts donats i si els punts són (x_1, y_1) i (x_2, y_2), l’equació és (x-x_1) / (x_2-x_1) = (y-y_1) / (y_2-y_1) i per tant l'equació de la línia que passa per (-1, -2) i (1,4) és (x - (- 1)) / (1 - (- 1)) = (y - (- 2) )) / (4 - (- 2)) o (x + 1) / 2 = (i + 2) / 6 i multiplicant per 6 o 3 (x + 1) = y + 2 o y = 3x + 1
Quina declaració descriu millor l’equació (x + 5) 2 + 4 (x + 5) + 12 = 0? L’equació és de forma quadràtica, ja que es pot reescriure com una equació quadràtica amb u u (x + 5). L’equació és de forma quadràtica perquè quan s’expandeix,
Com s’explica a continuació, la substitució de l’U la qualificarà de quadràtica en u. Per a quadràtics en x, la seva expansió tindrà la major potència de x com 2, la qualificarà millor com quadràtica en x.