Resposta:
Explicació:
Com
Tingueu en compte que només una línia pot passar per qualsevol punt donat i si hi ha punts
i, per tant, l'equació de la línia que passa
o bé
o bé
o bé
Sigui P (x_1, y_1) un punt i sigui l la línia amb l'equació ax + per + c = 0.Mostra la distància d de P-> l donada per: d = (ax_1 + per_1 + c) / sqrt (a ^ 2 + b ^ 2)? Trobeu la distància d del punt P (6,7) de la línia l amb l’equació 3x + 4y = 11?
D = 7 Deixem l '> a x + b y + c = 0 i p_1 = (x_1, y_1) un punt no sobre l. Suposant que b ne 0 i crida d ^ 2 = (x-x_1) ^ 2 + (y-y_1) ^ 2 després de substituir y = - (a x + c) / b a d ^ 2 tenim d ^ 2 = ( x - x_1) ^ 2 + ((c + ax) / b + y_1) ^ 2. El següent pas és trobar el mínim d ^ 2 pel que fa a x, de manera que trobarem x tal que d / (dx) (d ^ 2) = 2 (x - x_1) - (2 a ((c + ax) / b + y_1 )) / b = 0. Això ocorre per x = (b ^ 2 x_1 - ab y_1-ac) / (a ^ 2 + b ^ 2) Ara, substituint aquest valor a d ^ 2 obtenim d ^ 2 = (c) + a x_1 + b y_1) ^ 2 / (a ^ 2 + b ^ 2) d = (c + a x_1 + b y_1) / sqrt (a
Sigui S = {v1 = (2,2,3), v2 = (- 1, -2,1), v3 = (0,1,0)}. Trobeu una condició a, b i c de manera que v = (a, b, c) sigui una combinació lineal de v1, v2 i v3?
Mirar abaix. v_1, v_2 i v_3 abasten RR ^ 3 perquè det ({v_1, v_2, v_3}) = - 5 ne 0 és així, qualsevol vector v de RR ^ 3 es pot generar com una combinació lineal de v_1, v_2 i v_3. La condició és ((a), (b), (c)) = lambda_1 ((2), (2), (3)) + lambda_2 ((- 1), (- 2), (1)) + lambda_3 ((0 ), (1), (0)) equivalent al sistema lineal ((2, -1,0), (2, -2,1), (3,1,0)) ((lambda_1), (lambda_2) , (lambda_3)) = ((a), (b), (c)) Resoldre lambda_1, lambda_2, lambda_3 tindrem els components v a la referència v_1, v_2, v_2
P és el punt mig del segment de línia AB. Les coordenades de P són (5, -6). Les coordenades d’A són (-1,10).Com trobeu les coordenades de B?
B = (x_2, y_2) = (11, -22) Si es coneix un punt final (x_1, y_1) i el punt mig (a, b) d'un segment de línia, podem utilitzar la fórmula de mig punt per cerqueu el segon punt final (x_2, y_2). Com utilitzar la fórmula del punt mig per trobar un punt final? (x_2, y_2) = (2a-x_1, 2b-y_1) Aquí, (x_1, y_1) = (- 1, 10) i (a, b) = (5, -6) Així, (x_2, y_2) = (2 colors (vermell) ((5)) -color (vermell) ((- 1)), 2 colors (vermell) ((- 6)) - color (vermell) 10) (x_2, y_2) = (10 + 1, -12-10) (x_2, y_2) = (11, -22) #