Resposta:
Prova a continuació
Explicació:
Expansió d’un cúbic
Identitat:
Algú pot ajudar a verificar aquesta identitat de trigonometria? (Sinx + cosx) ^ 2 / sin ^ 2x-cos ^ 2x = sin ^ 2x-cos ^ 2x / (sinx-cosx) ^ 2
Es verifica a continuació: (sinx + cosx) ^ 2 / (sin ^ 2x-cos ^ 2x) = (sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2 => (cancel·la ((sinx + cosx) ) (sinx + cosx)) / (cancel·la ((sinx + cosx)) (sinx-cosx)) ((sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2 => ((sinx + cosx) ( sinx-cosx)) / ((sinx-cosx) (sinx-cosx)) = (sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2 => color (verd) ((sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2) = (sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2
Demaneu-ho: sqrt ((1-cosx) / (1 + cosx)) + sqrt ((1 + cosx) / (1-cosx)) = 2 / abs (sinx)?
Prova a continuació utilitzant conjugats i la versió trigonomètrica del teorema de Pitàgores. Part 1 sqrt ((1-cosx) / (1 + cosx)) color (blanc) ("XXX") = sqrt (1-cosx) / sqrt (1 + cosx) color (blanc) ("XXX") = sqrt ((1-cosx)) / sqrt (1 + cosx) * color sqrt (1-cosx) / sqrt (1-cosx) (blanc) ("XXX") = (1-cosx) / sqrt (1-cos ^ 2x) Part 2 de manera similar sqrt ((1 + cosx) / color (1-cosx) (blanc) ("XXX") = (1 + cosx) / sqrt (1-cos ^ 2x) part 3: combinació dels termes sqrt ( (1-cosx) / (1 + cosx)) + sqrt ((1 + cosx) / (1-cosx) color (blanc) ("XXX") = (1-
Com es verifica [sin ^ 3 (B) + cos ^ 3 (B)] / [sin (B) + cos (B)] = 1-sin (B) cos (B)?
Prova a continuació Expansió de a ^ 3 + b ^ 3 = (a + b) (a ^ 2-ab + b ^ 2), i podem utilitzar això: (sin ^ 3B + cos ^ 3B) / (sinB + cosB) = ((sinB + cosB) (sin ^ 2B-sinBcosB + cos ^ 2B)) / (sinB + cosB) = sin ^ 2B-sinBcosB + cos ^ 2B = sin ^ 2B + cos ^ 2B-sinBcosB (identitat: sin ^ 2x + cos ^ 2x = 1) = 1-sinBcosB