Resposta:
Prova a continuació
Explicació:
Expansió de
Mostrar que cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Estic una mica confós si fa Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10), es tornarà negatiu com cos (180 ° -theta) = - costheta a el segon quadrant. Com puc provar la pregunta?
Si us plau mireu més a baix. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Cos ^ 2 π / 8 + cos ^ 2 3π / 8 + Cos ^ 2 5π / 8 + cos ^ 2 7π / 8 Resoldre i respondre el valor?
Rarrcos ^ 2 (pi / 8) + cos ^ 2 ((3pi) / 8) + cos ^ 2 ((5pi) / 8) cos ^ 2 ((7pi) / 8) = 2 rarrcos ^ 2 (pi / 8) + cos ^ 2 ((3pi) / 8) + cos ^ 2 ((5pi) / 8) + cos ^ 2 ((7pi) / 8) = cos ^ 2 (pi / 8) + cos ^ 2 ((3pi) / 8) + cos ^ 2 (pi- (3pi) / 8) cos ^ 2 (pi-pi / 8) = cos ^ 2 (pi / 8) + cos ^ 2 ((3pi) / 8) + cos ^ 2 ((3pi) / 8) + cos ^ 2 (pi / 8) = 2 * [cos ^ 2 (pi / 8) + cos ^ 2 ((3pi) / 8)] = 2 * [cos ^ 2 (pi / 8) + sin ^ 2 (pi / 2- (3pi) / 8)] = 2 * [cos ^ 2 (pi / 8) + sin ^ 2 (pi / 8) = 2 * 1 = 2
Com es verifica el cos ^ 2 2A = (1 + cos4A) / 2?
Veure a sota Utilitza la propietat: cos2A = 2cos ^ 2A-1 costat dret: = (1 + cos4A) / 2 = (1 + cos2 (2A)) / 2 = (1+ (2cos ^ 2 (2A) -1)) / 2 = (1-1 + 2cos ^ 2 (2A)) / 2 = (cancel1-cancel1 + 2cos ^ 2 (2A)) / 2 = (2cos ^ 2 (2A)) / 2 = (cancel2cos ^ 2 (2A) )) / cancel2 = cos ^ 2 (2A) = costat esquerre