Resposta:
Explicació:
Penso
Si aquest és el cas, llavors necessitem ampliar el polinomi.
Per les fórmules de Vieta, el producte d’una equació quadràtica
Tan,
Font:
en.wikipedia.org/wiki/Vieta%27s_formulas
Les arrels de l’equació quadràtica 2x ^ 2-4x + 5 = 0 són alfa (a) i beta (b). (a) Mostrar que 2a ^ 3 = 3a-10 (b) Trobeu l'equació quadràtica amb les arrels 2a / b i 2b / a?
Mirar abaix. Primer trobeu les arrels de: 2x ^ 2-4x + 5 = 0 Usant la fórmula quadràtica: x = (- (- 4) + - sqrt ((- 4) ^ 2-4 (2) (5))) / 4 x = (4 + -sqrt (-24)) / 4 x = (4 + -2isqrt (6)) / 4 = (2 + -isqrt (6)) / 2 alfa = (2 + isqrt (6)) / 2 beta = (2-isqrt (6)) / 2 a) 2a ^ 3 = 3a-10 2 ((2 + isqrt (6)) / 2) ^ 3 = 3 ((2 + isqrt (6)) / 2 ) -10 2 ((2 + isqrt (6)) / 2) ^ 3 = (2 (2 + isqrt (6)) (2 + isqrt (6)) (2 + isqrt (6))) / 8 = 2 * (- 28 + 6isqrt (6)) / 8 color (blau) (= (- 14 + 3isqrt (6)) / 2) 3 ((2 + isqrt (6)) / 2) -10 = (6 + 3isqrt) (6)) / 2-10 = (6 + 3isqrt (6) -20) / 2color (blau) (= (- 14 + 3isqrt (6)) / 2)
Si la suma de les arrels cúbiques de la unitat és 0, llavors proveu que el producte de les arrels del cub de la unitat = 1?
"Vegeu l’explicació" z ^ 3 - 1 = 0 "és l’equació que dóna les arrels del cub de la unitat. Per tant, podem aplicar la teoria de polinomis per concloure que" z_1 * z_2 * z_3 = 1 "(identitats de Newton) ) "." "Si realment voleu calcular-lo i comprovar-ho:" z ^ 3 - 1 = (z - 1) (z ^ 2 + z + 1) = 0 => z = 1 "O" z ^ 2 + z + 1 = 0 => z = 1 "OR" z = (-1 pm sqrt (3) i) / 2 => (z_1) * (z_2) * (z_3) = 1 * ((- 1 + sqrt (3) i ) / 2) * (- 1-sqrt (3) i) / 2 = 1 * (1 + 3) / 4 = 1
Q.1 Si alfa, beta són les arrels de l'equació x ^ 2-2x + 3 = 0 obtenim l'equació les arrels de les quals són alpha ^ 3-3 alpha ^ 2 + 5 alpha -2 i beta ^ 3-beta ^ 2 + beta + 5?
Q.1 Si alfa, beta són les arrels de l'equació x ^ 2-2x + 3 = 0 obtenim l'equació les arrels de les quals són alpha ^ 3-3 alpha ^ 2 + 5 alpha -2 i beta ^ 3-beta ^ 2 + beta + 5? Resposta donada equació x 2-2x + 3 = 0 => x = (2pmsqrt (2 ^ 2-4 * 1 * 3)) / 2 = 1pmsqrt2i Let alpha = 1 + sqrt2i i beta = 1-sqrt2i Ara deixeu gamma = alfa ^ 3-3 alfa ^ 2 + 5 alfa -2 => gamma = alfa ^ 3-3 alfa ^ 2 + 3 alfa -1 + 2alfa-1 => gamma = (alfa-1) ^ 3 + alfa-1 + alpha => gamma = (sqrt2i) ^ 3 + sqrt2i + 1 + sqrt2i => gamma = -2sqrt2i + sqrt2i + 1 + sqrt2i = 1 I deixeu que delta = beta ^ 3-beta ^ 2