Resposta:
Explicació:
Deixar
Per tant, els tres enters consecutius són
Comprovant la nostra resposta, ho trobem
Resposta:
El reqd. ints. són,
Explicació:
Necessitem consecutius enters, així que, si comencem per
Llavors, pel que es dóna,
Observeu que compleixen la condició donada.
El reqd. ints. són,
Els tres primers termes de 4 nombres enters es troben en P. aritmètica i els últims tres termes es troben a Geometric.P.Com trobar aquests 4 nombres? Donat (1r + últim terme = 37) i (la suma dels dos enters al mig és 36)
"Els enters de reqd són," 12, 16, 20, 25. Anomenem els termes t_1, t_2, t_3 i, t_4, on, t_i en ZZ, i = 1-4. Atès que, els termes t_2, t_3, t_4 formen un GP, prenem, t_2 = a / r, t_3 = a, i, t_4 = ar, on, ane0 .. També tenim en compte que, t_1, t_2 i, t_3 són a AP, tenim, 2t_2 = t_1 + t_3 rArr t_1 = 2t_2-t_3 = (2a) / ra. Així, en conjunt, tenim, la Seq., T_1 = (2a) / r-a, t_2 = a / r, t_3 = a, i, t_4 = ar. Pel que es dóna, t_2 + t_3 = 36rArra / r + a = 36, és a dir, un (1 + r) = 36r ....................... .................................... (ast_1). A més, t_1 + t_4 = 37,
Es poden representar tres nombres enters consecutius per n, n + 1 i n + 2. Si la suma de tres enters consecutius és 57, quins són els enters?
18,19,20 La suma és l'addició del nombre de manera que la suma de n, n + 1 i n + 2 es pot representar com, n + n + 1 + n + 2 = 57 3n + 3 = 57 3n = 54 n = 18 de manera que el nostre primer nombre sencer és de 18 (n) el nostre segon és de 19, (18 + 1) i el nostre tercer és de 20, (18 + 2).
"Lena té 2 enters consecutius.Es nota que la seva suma és igual a la diferència entre els seus quadrats. Lena escull dos altres enters consecutius i nota la mateixa cosa. Demostrar algebraicament que això és cert per a 2 enters consecutius?
Si us plau, consulteu l'explicació. Recordem que els enters consecutius difereixen per 1. Per tant, si m és un sencer, llavors, l’enter sencer ha de ser n + 1. La suma d'aquests dos enters és n + (n + 1) = 2n + 1. La diferència entre els seus quadrats és (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, com es desitja! Sent la joia de les matemàtiques.