Resposta:
Explicació:
Trobeu primer el pendent de la línia que uneix els dos punts.
línies que són perpendiculars: els productes de les seves pendents són
Un pendent és el recíproc negatiu de l’altre.
(Això vol dir girar-lo i canviar el signe)
La línia perpendicular té un pendent de
Resposta:
+5
Explicació:
Tingueu en compte que deliberadament no han posat l’ordre dels punts perquè coincideixin amb el que normalment els llegiríeu. D'esquerra a dreta a l'eix X.
Estableix el punt més esquerre com a
Estableix el punt més correcte com a
Suposem que el pendent de la línia donada és
Llegint de l'esquerra a la dreta tenim:
La inclinació de la línia donada és:
La línia perpendicular té el pendent:
Resposta:
Pendent = 5
Explicació:
En primer lloc, hem de calcular el gradient / pendent de la línia.
Vaig a deixar
i
Hi ha una regla que indica
Si ho deixo
llavors
Per tant, el pendent és igual a 5
Quina és l’equació de la línia que passa per (0, -1) i és perpendicular a la línia que passa pels següents punts: (8, -3), (1,0)?
7x-3y + 1 = 0 La inclinació de la línia que uneix dos punts (x_1, y_1) i (x_2, y_2) es dóna per (y_2-y_1) / (x_2-x_1) o (y_1-y_2) / (x_1-x_2) ) Com els punts són (8, -3) i (1, 0), la inclinació de la línia que els uneix serà donada per (0 - (- 3)) / (1-8) o (3) / (- 7) és a dir, -3/7. El producte de pendent de dues línies perpendiculars sempre és -1. Per tant, la inclinació de la línia perpendicular a ella serà de 7/3 i, per tant, es pot escriure l’equació en forma de pendent com y = 7 / 3x + c A mesura que passa pel punt (0, -1), posem aquests valors a
Una línia passa pels punts (2,1) i (5,7). Una altra línia passa pels punts (-3,8) i (8,3). Les línies són paral·leles, perpendiculars o cap altra?
Ni paral·lel ni perpendicular Si el gradient de cada línia és el mateix, són paral·lels. Si el gradient de és l'inversor negatiu de l'altre, són perpendiculars entre si. És a dir: un és m "i l'altre és" -1 / m Que la línia 1 sigui L_1 Que la línia 2 sigui L_2 Que el gradient de la línia 1 sigui m_1 Que el gradient de la línia 2 sigui m_2 "gradient" = ("Canvia i -axis ") / (" Canvia en l'eix x ") => m_1 = (7-1) / (5-2) = 6/3 = +2 .............. ....... (1) => m_2 = (3-8) / (8 - (- 3)) = (-5) /
Escriviu la forma de pendent de l'equació amb el pendent donat que passa pel punt indicat. A.) la línia amb pendent -4 que passa per (5,4). i també B.) la línia amb pendent 2 que passa per (-1, -2). si us plau, ajuda, això és confús?
Y-4 = -4 (x-5) "i" y + 2 = 2 (x + 1)> "és l'equació d'una línia en" color (blau) "forma punt-pendent". • color (blanc) (x) y-y_1 = m (x-x_1) "on m és el pendent i" (x_1, y_1) "un punt de la línia" (A) "donat" m = -4 "i "(x_1, y_1) = (5,4)" substituint aquests valors a l'equació dóna "y-4 = -4 (x-5) larrcolor (blau)" en forma de punt-pendent "(B)" donat "m = 2 "i" (x_1, y_1) = (- 1, -2) y - (- 2)) 2 (x - (- 1)) rArry + 2 = 2 (x + 1) larrcolor (blau) " en forma d