Els punts finals del segment de línia PQ són A (1,3) i Q (7, 7). Quin és el punt mig del segment de línia PQ?
El canvi de coordenades d’un extrem al punt mig és la meitat del canvi de coordenades d’un i de l’altre. Per anar de P a Q, la coordenada x augmenta en 6 i la coordenada y augmenta 4. Per anar de P al punt mig, la coordenada x augmentarà en 3 i la coordenada y augmentarà en 2; aquest és el punt (4, 5)
P és el punt mig del segment de línia AB. Les coordenades de P són (5, -6). Les coordenades d’A són (-1,10).Com trobeu les coordenades de B?
B = (x_2, y_2) = (11, -22) Si es coneix un punt final (x_1, y_1) i el punt mig (a, b) d'un segment de línia, podem utilitzar la fórmula de mig punt per cerqueu el segon punt final (x_2, y_2). Com utilitzar la fórmula del punt mig per trobar un punt final? (x_2, y_2) = (2a-x_1, 2b-y_1) Aquí, (x_1, y_1) = (- 1, 10) i (a, b) = (5, -6) Així, (x_2, y_2) = (2 colors (vermell) ((5)) -color (vermell) ((- 1)), 2 colors (vermell) ((- 6)) - color (vermell) 10) (x_2, y_2) = (10 + 1, -12-10) (x_2, y_2) = (11, -22) #
Un segment de línia té punts finals a (a, b) i (c, d). El segment de línia es dilata per un factor de r al voltant (p, q). Quins són els nous punts finals i la longitud del segment de línia?
(a, b) a ((1-r) p + ra, (1-r) q + rb), (c, d) a ((1-r) p + rc, (1-r) q + rd), nova longitud l = r sqrt {(ac) ^ 2 + (bd) ^ 2}. Tinc una teoria que totes aquestes preguntes són aquí, de manera que hi ha alguna cosa que els principiants facin. Vaig a fer el cas general aquí i veure què passa. Traduïm el pla de manera que el punt de dilatació P es mapeja a l'origen. A continuació, la dilatació escala les coordenades per un factor de r. A continuació, traduïm el pla de tornada: A '= r (A - P) + P = (1-r) P + r A Aquesta és l'equació paramètrica d'u