Resposta:
És
Explicació:
Per definició, el conjugat de
i
El terme "conjugat" només s'aplica a la suma o diferència de dos termes.
"3 menys l'arrel quadrada de 2"
significa (en forma algebraica)
Aplicar la definició anterior amb
tenim
El conjugat de
Què és [5 (arrel quadrada de 5) + 3 (arrel quadrada de 7)] / [4 (arrel quadrada de 7) - 3 (arrel quadrada de 5)]?
(159 + 29sqrt (35)) / 47 color (blanc) ("XXXXXXXX") assumint que no he fet cap error aritmètic (5 (sqrt (5)) + 3 (sqrt (7))) / (4 (sqrt) (7)) - 3 (sqrt (5)) Racionalitzeu el denominador multiplicant pel conjugat: = (5 (sqrt (5)) + 3 (sqrt (7))) / (4 (sqrt (7)) - 3 (sqrt (5))) xx (4 (sqrt (7)) + 3 (sqrt (5))) / (4 (sqrt (7)) + 3 (sqrt (5))) = (20sqrt (35) + 15 ((sqrt (5)) ^ 2) +12 ((sqrt (7)) ^ 2) + 9sqrt (35)) / (16 ((sqrt (7)) ^ 2) -9 ((sqrt (5) ) ^ 2)) = (29sqrt (35) +15 (5) +12 (7)) / (16 (7) -9 (5)) = (29sqrt (35) + 75 + 84) / (112-45 ) = (159 + 29sqrt (35)) / 47
Quin és el conjugat de l’arrel quadrada de 2 + l’arrel quadrada de 3 + l’arrel quadrada de 5?
Sqrt (2) + sqrt (3) + sqrt (5) no té un conjugat. Si esteu intentant eliminar-lo d'un denominador, heu de multiplicar per alguna cosa com: (sqrt (2) + sqrt (3) -sqrt (5)) (sqrt (2) -sqrt (3) + sqrt (5) )) (sqrt (2) -sqrt (3) -sqrt (5)) El producte de (sqrt (2) + sqrt (3) + sqrt (5)) i aquest és -24
Quina és l'arrel quadrada de 7 + arrel quadrada de 7 ^ 2 + arrel quadrada de 7 ^ 3 + arrel quadrada de 7 ^ 4 + arrel quadrada de 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) El primer que podem fer és cancel·lar les arrels amb les potències parells. Des de: sqrt (x ^ 2) = x i sqrt (x ^ 4) = x ^ 2 per a qualsevol nombre, podem dir que sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Ara, 7 ^ 3 poden ser reescrits com 7 ^ 2 * 7, i que 7 ^ 2 pot sortir de l’arrel! El mateix s'aplica a 7 ^ 5 però es reescriu com 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + 7sqrt (7) + 49 + 49sqrt (7) Ara