Resposta:
L'impuls és
Explicació:
Sabem que l’impuls és un canvi d’impuls. Momentum es dóna per
Per tant, volem trobar la velocitat de canvi, o la derivada de la funció de velocitat, i avaluar-la a temps
#v '(t) = 3cos (3t) - 6sin (6t) #
#v '(pi / 3) = 3cos (3 (pi / 3)) - 6sin (6 (pi / 3)) #
#v '(pi / 3) = -3 #
Llavors ho tenim
#J = mDelta v #
# J = 4 (-3) #
#J = -12 kg Ns #
Esperem que això ajudi!
La velocitat d’un objecte amb una massa de 3 kg es dóna per v (t) = sin 2 t + cos 9 t. Quin és l’impuls aplicat a l’objecte a t = (7 pi) / 12?
He trobat 25.3Ns però comprovi el meu mètode .... Jo faria servir la definició d’impuls però en aquest cas en un instant: "Impuls" = F * t on: F = força t = temps intento reorganitzar l’expressió anterior : "Impuls" = F * t = ma * t Ara, per trobar l’acceleració trobo el pendent de la funció que descriu la vostra velocitat i l’avaluarà en un instant donat. Així: v '(t) = a (t) = 2cos (2t) -9sin (9t) a t = 7 / 12pi a (7 / 12pi) = 2cos (2 * 7 / 12pi) -9sin (9 * 7 / 12pi) = 4,6 m / s ^ 2 Així l'impuls: "Impuls" = F * t = ma * t = 3 *
La velocitat d’un objecte amb una massa de 3 kg es dóna per v (t) = sin 4 t + cos 3 t. Quin és l’impuls aplicat a l’objecte a t = pi / 6?
Int F * dt = 2.598 N * s int F * dt = int m * dvdv = 4 * cos4 t * d t-3 * sin 3 t * dt int F * dt = m (4 int cos 4t dt -3 int sin 3t dt) int F * dt = m (4 * 1 / 4sin 4t + 3 * 1/3 cos 3t) int F * dt = m (sin 4t + cos 3t) "per" t = pi / 6 int F * dt = m (sin 4 * pi / 6 + cos 3 * pi / 6) int F * dt = m (sin (2 * pi / 3) + cos (pi / 2)) int F * dt = 3 (0,866 + 0 ) int F * dt = 3 * 0,866 int F * dt = 2,598 N * s
La velocitat d’un objecte amb una massa de 6 kg és donada per v (t) = sin 2 t + cos 4 t. Quin és l’impuls aplicat a l’objecte a t = (5pi) / 12?
No hi ha cap resposta a aquest Impuls és vec J = int_a ^ b vec F dt = int_ (t_1) ^ (t_2) (d vec p) / (dt) dt = vec p (t_2) - vec p (t_1) període de temps perquè hi hagi un impuls dins de la definició proporcionada, i l’impuls és el canvi d’impuls durant aquest període de temps. Podem calcular el moment de la partícula en t = (5pi) / 12 com v = 6 (sin (10pi) / 12 + cos (20pi) / 12) = 6 kg m ^ (- 1) Però això és l’impuls instantani. Podem provar vec J = lim_ (Delta t = 0) vec p (t + Delta t) - vec p (t) = 6 lim_ (Delta t = 0) sin 2 (t + Delta t) + cos 4 (t + Delta t) -sin 2t