Resposta:
Explicació:
El producte transversal de
Donat
Aquesta és la següent "anterior" (salti si no és necessari)
Una manera de recordar l’ordre de les combinacions de productes creuats és tractar el sistema com si volguéssim calcular un determinant per
alguna cosa com:
per obtenir alguna cosa com:
No oblideu alternar els signes i recordeu que aquesta és només una ajuda per a la memòria i no una avaluació real de determinació
Quin és el producte creuat de [0,8,5] i [1,2, -4]?
[0,8,5] xx [1,2, -4] = [-42,5, -8] El producte creuat de vecA i vecB és donat per vecA xx vecB = || vecA || * || vecB || * sin (theta) hatn, on theta és l'angle positiu entre vecA i vecB, i hatn és un vector unitari amb la direcció donada per la regla de la mà dreta. Per als vectors unitaris hati, hatj i hatk en les direccions de x, y i z respectivament, color (blanc) ((color (negre) {hati xx hati = vec0}, color (negre) {qquad hati xx hatj = hatk} , color (negre) {qquad hati xx hatk = -hatj}), (color (negre) {hatj xx hati = -hatk}, color (negre) {qquad hatj xx hatj = vec0}, color (negre) {qquad
Quin és el producte creuat de [-1,0,1] i [0,1,2]?
El producte creuat és = 〈- 1,2, -1〉 El producte creuat es calcula amb el determinant | (veci, vecj, veck), (d, e, f), (g, h, i) | on 〈d, e, f〉 i 〈g, h, i〉 són els 2 vectors Aquí, tenim veca = 〈- 1,0,1〉 i vecb = 〈0,1,2〉 Per tant, | (veci, vecj, veck), (-1,0,1), (0,1,2) | = veci | (0,1), (1,2) | -vecj | (-1,1), (0,2) | + veck | (-1,0), (0,1) | = veci (-1) -vecj (-2) + veck (-1) = 〈- 1,2, -1〉 = verificació vecc fent dos productes de punt 〈-1,2, -1〉. 〈- 1, 0,1〉 = 1 + 0-1 = 0 ,2 -1,2, -1〉. 〈0,1,2〉 = 0 + 2-2 = 0 Així, vecc és perpendicular a veca i vecb
Quin és el producte creuat de [-1,0,1] i [3, 1, -1]?
[-1,2, -1] Sabem que vecA xx vecB = || vecA || * || vecB || * sin (theta) hatn, on hatn és un vector unitari donat per la regla de la mà dreta. Així, per als vectors unitaris hati, hatj i hatk en la direcció de x, y i z respectivament, podem arribar als resultats següents. color (blanc) ((color (negre) {hati xx hati = vec0}, color (negre) {qquad hati xx hatj = hatk}, color (negre) {qquad hati xx hatk = -hatj}), (color (negre) ) {hatj xx hati = -hatk}, color (negre) {qquad hatj xx hatj = vec0}, color (negre) {qquad hatj xx hatk = hati}), (color (negre) {hatk xx hati = hatj}, color (negre) {qquad hat