Resposta:
Resposta final:
Explicació:
Definició de la línia que passa
Definició de la línia que passa
Trobeu el degradat de
Tan
Equació de
O, com vulgueu, hagueu organitzat.
Quina és l’equació de la línia que passa per (0, -1) i és perpendicular a la línia que passa pels següents punts: (8, -3), (1,0)?
7x-3y + 1 = 0 La inclinació de la línia que uneix dos punts (x_1, y_1) i (x_2, y_2) es dóna per (y_2-y_1) / (x_2-x_1) o (y_1-y_2) / (x_1-x_2) ) Com els punts són (8, -3) i (1, 0), la inclinació de la línia que els uneix serà donada per (0 - (- 3)) / (1-8) o (3) / (- 7) és a dir, -3/7. El producte de pendent de dues línies perpendiculars sempre és -1. Per tant, la inclinació de la línia perpendicular a ella serà de 7/3 i, per tant, es pot escriure l’equació en forma de pendent com y = 7 / 3x + c A mesura que passa pel punt (0, -1), posem aquests valors a
Quina és l’equació de la línia que passa per (0, -1) i és perpendicular a la línia que passa pels següents punts: (13,20), (16,1)?
Y = 3/19 * x-1 El pendent de la línia passa per (13,20) i (16,1) és m_1 = (1-20) / (16-13) = - 19/3 Sabem la condició de la perpedicularitat entre dues línies és el producte de les seves pendents igual a -1: .m_1 * m_2 = -1 o (-19/3) * m_2 = -1 o m_2 = 3/19 de manera que la línia que passa (0, -1) ) és y + 1 = 3/19 * (x-0) o y = 3/19 * x-1 gràfic {3/19 * x-1 [-10, 10, -5, 5]} [Ans]
Quina és l’equació de la línia que passa per (0, -1) i és perpendicular a la línia que passa pels següents punts: (-5,11), (10,6)?
Y = 3x-1 "l'equació d'una recta està donada per" y = mx + c "on m = el gradient &" c = "la intercepció y" "volem el gradient de la línia perpendicular a la línia" "passant pels punts donats" (-5,11), (10,6) necessitarem "" m_1m_2 = -1 per a la línia donada m_1 = (Deltay) / (Deltax) = (y_2-y_1) / (x_2 -x_1): .m_1 = (11-6) / (- 5-10) = 5 / -15 = -5 / 15 = -1 / 3 "" m_1m_2 = -1 => - 1 / 3xxm_2 = -1: .m_2 = 3 de manera que l’equació requerida. es converteix en y = 3x + c passa a través de "" (0