Resposta:
Explicació:
L’àrea d’un trapezi es representa per l’equació:
on
i
connectar-ho ens aconseguirà:
L'alçada de Jack és de 2/3 de l'alçada de Leslie. L’alçada de Leslie és de 3/4 de l’altura de Lindsay. Si Lindsay té una alçada de 160 cm, trobeu l’altura de Jack i l’alçada de Leslie?
Leslie's = 120cm i Jack's height = 80cm Leslie's height = 3 / cancel44 ^ 1xxcancel160 ^ 40/1 = 120cm Jacks height = 2 / cancel33 ^ 1xxcancel120 ^ 40/1 = 80cm
Les bases d’un trapezi són 10 unitats i 16 unitats, i la seva àrea és de 117 unitats quadrades. Quina és l'alçada d'aquest trapezi?
L’alçada del trapezoide és 9 L’àrea A d’un trapezi amb bases b_1 i b_2 i l’altura h es dóna per A = (b_1 + b_2) / 2h Resolució de h, tenim h = (2A) / (b_1 + b_2) Introduint els valors donats ens dóna h = (2 * 117) / (10 + 16) = 234/26 = 9
Dos acords paral·lels d'un cercle amb longituds de 8 i 10 serveixen com a bases d'un trapezi inscrit al cercle. Si la longitud d'un radi del cercle és de 12, quina és la major àrea possible de tal trapezi inscrit descrit?
72 * sqrt (2) + 9 * sqrt (119) ~ = 200.002 1 i 2 Esquemàticament, podríem inserir un paral·lelogram ABCD en un cercle, i sempre que els costats AB i CD siguin acords dels cercles, en la forma de la figura 1 o la figura 2. La condició que els costats AB i CD hagin de ser els acords del cercle impliquen que el trapezoide inscrit ha de ser un isòsceles perquè les diagonals del trapezoide (AC i CD) són iguals perquè A hat BD = B hat AC = B hatD C = Un CD de barret i la línia perpendicular a AB i CD A través del centre E es barregen aquests acords (això significa que AF = B