Resposta:
Explicació:
La vostra equació és de la forma
El focus és
La directriu és
Tenint en compte el focus
La directriu
Quina és l’equació en forma estàndard de la paràbola amb un focus a (-10,8) i una directriu de y = 9?
L’equació de la paràbola és (x + 10) ^ 2 = -2y + 17 = -2 (i-17/2) Qualsevol punt (x, y) de la paràbola és equidistant del focus F = (- 10,8 ) i la directriu y = 9 Per tant, sqrt ((x + 10) ^ 2 + (i-8) ^ 2) = y-9 (x + 10) ^ 2 + (y-8) ^ 2 = (y- 9) ^ 2 (x + 10) ^ 2 + y ^ 2-16y + 64 = y ^ 2-18y + 81 (x + 10) ^ 2 = -2y + 17 = -2 (y-17/2) gràfic {((x + 10) ^ 2 + 2y-17) (y-9) = 0 [-31,08, 20,25, -9,12, 16,54]}
Quina és l’equació en forma estàndard de la paràbola amb un focus a (10, -9) i una directriu de y = -14?
Y = x ^ 2 / 10-2x-3/2 del focus donat (10, -9) i de l'equació de directrix y = -14, calcula pp = 1/2 (-9--14) = 5/2 calcula el vèrtex (h, k) h = 10 i k = (- 9 + (- 14)) / 2 = -23 / 2 vèrtex (h, k) = (10, -23/2) Utilitzeu la forma de vèrtex (xh ) ^ 2 = + 4p (yk) positiu 4p perquè s'obre cap amunt (x-10) ^ 2 = 4 * (5/2) (i - 23/2) (x-10) ^ 2 = 10 (i + 23/2) x ^ 2-20x + 100 = 10y + 115 x ^ 2-20x-15 = 10y y = x ^ 2 / 10-2x-3/2 la gràfica de y = x ^ 2 / 10-2x- 3/2 i la directriu y = -14 gràfica {(yx ^ 2/10 + 2x + 3/2) (y + 14) = 0 [-35,35, -25,10]}
Quina és l’equació en forma estàndard de la paràbola amb un focus a (-10, -9) i una directriu de y = -4?
L’equació de paràbola és y = -1/10 (x + 10) ^ 2 -6,5 El focus està a la directriu (-10, -9): y = -4. El vèrtex és a mig punt entre el focus i el directrix. Així, el vèrtex es troba a (-10, (-9-4) / 2) o (-10, -6.5) i la paràbola s'obre cap avall (a = -ive). L'equació de paràbola és y = a (xh) ^ 2 = k o y = a (x - (- 10)) ^ 2+ (-6,5) o y = a (x + 10) ^ 2 -6,5 on (h, k) és el vèrtex. La distància entre vèrtex i directrix, d = 6.5-4.0 = 2.5 = 1 / (4 | a |):. a = -1 / (4 * 2.5) = -1/10 Per tant, l'equació de paràbola és y