Bé, tens almenys dues maneres de fer-ho.
La primera manera:
Deixar
#color (blau) (vecu xx vecv) = << u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1 >>
#= << -1*6 - 2*3, 2*4 - (-1*6), -1*3 - (-1*4) >>#
# = color (blau) (<< -12, 14, 1 >>) #
Suposant que no sabíeu aquesta fórmula, la segona manera (que és una mica més infal·lible) és reconèixer que:
#hati xx hatj = hatk #
#hatj xx hatk = hati #
#hatk xx hati = hatj #
#hatA xx hatA = vec0 #
#hatA xx hatB = -hatB xx hatA # on
#hati = << 1,0,0 >> ,#hatj = << 0,1,0 >> # , i#hatk = << 0,0,1 >> .
Així, reescrivint els vectors en forma de vector unitat:
# (- hati - hatj + 2hatk) xx (4hati + 3hatj + 6hatk) #
# = cancel·la (-4 (hati xx hati)) ^ (0) - 3 (hati xx hatj) - 6 (hati xx hatk) - 4 (hatj xx hati) - cancel (3 (hatj xx hatj)) ^ (0) - 6 (hatj xx hatk) + 8 (hatk xx hati) + 6 (hatk xx hatj) + cancel (12 (hatk xx hatk)) ^ (0) #
# = -3hatk + 6hatj + 4hatk - 6hati + 8hatj - 6hati #
# = - 12hati + 14hatj + hatk #
# = color (blau) (<< -12, 14, 1 >>) #
com s'esperava.
Quin és el producte creuat de [0,8,5] i [1,2, -4]?
[0,8,5] xx [1,2, -4] = [-42,5, -8] El producte creuat de vecA i vecB és donat per vecA xx vecB = || vecA || * || vecB || * sin (theta) hatn, on theta és l'angle positiu entre vecA i vecB, i hatn és un vector unitari amb la direcció donada per la regla de la mà dreta. Per als vectors unitaris hati, hatj i hatk en les direccions de x, y i z respectivament, color (blanc) ((color (negre) {hati xx hati = vec0}, color (negre) {qquad hati xx hatj = hatk} , color (negre) {qquad hati xx hatk = -hatj}), (color (negre) {hatj xx hati = -hatk}, color (negre) {qquad hatj xx hatj = vec0}, color (negre) {qquad
Quin és el producte creuat de [-1,0,1] i [0,1,2]?
El producte creuat és = 〈- 1,2, -1〉 El producte creuat es calcula amb el determinant | (veci, vecj, veck), (d, e, f), (g, h, i) | on 〈d, e, f〉 i 〈g, h, i〉 són els 2 vectors Aquí, tenim veca = 〈- 1,0,1〉 i vecb = 〈0,1,2〉 Per tant, | (veci, vecj, veck), (-1,0,1), (0,1,2) | = veci | (0,1), (1,2) | -vecj | (-1,1), (0,2) | + veck | (-1,0), (0,1) | = veci (-1) -vecj (-2) + veck (-1) = 〈- 1,2, -1〉 = verificació vecc fent dos productes de punt 〈-1,2, -1〉. 〈- 1, 0,1〉 = 1 + 0-1 = 0 ,2 -1,2, -1〉. 〈0,1,2〉 = 0 + 2-2 = 0 Així, vecc és perpendicular a veca i vecb
Quin és el producte creuat de [-1,0,1] i [3, 1, -1]?
[-1,2, -1] Sabem que vecA xx vecB = || vecA || * || vecB || * sin (theta) hatn, on hatn és un vector unitari donat per la regla de la mà dreta. Així, per als vectors unitaris hati, hatj i hatk en la direcció de x, y i z respectivament, podem arribar als resultats següents. color (blanc) ((color (negre) {hati xx hati = vec0}, color (negre) {qquad hati xx hatj = hatk}, color (negre) {qquad hati xx hatk = -hatj}), (color (negre) ) {hatj xx hati = -hatk}, color (negre) {qquad hatj xx hatj = vec0}, color (negre) {qquad hatj xx hatk = hati}), (color (negre) {hatk xx hati = hatj}, color (negre) {qquad hat