Cert o fals ? Si 2 divideix gcf (a, b) i 2 divideix gcf (b, c) llavors 2 divideix gcf (a, c)
Si us plau mireu més a baix. GCF de dos nombres, per exemple x i y, (de fet, encara més) és un factor comú que divideix tots els números. L’escriurem com a gcf (x, y). Tanmateix, tingueu en compte que el GCF és el factor comú més gran i que cada factor d’aquests números és un factor de GCF també. També tingueu en compte que si z és un factor de y i y és un factor de x, llavors z també és un factor o x. Ara, ja que 2 divideix gcf (a, b), vol dir que 2 també divideix a i b i per tant a i b són iguals. De manera similar, com 2 divideix g
Kyle estalvia un 8% del seu cotxe. Aquest any el seu salari va ser de 2000 dòlars menys que en un nou any anterior i va estalviar $ 3000. Quin va ser el seu salari l'any anterior?
39500 dòlars La primera part d’aquesta pregunta indica que Kyle estalvia un 8% del seu salari cada any. Aquest any va guanyar $ 3000. Això es pot traduir en 3000 = x * 8%, o 3000 = 0,08x. Primer, dividiu els dos costats en 0,08, la qual cosa equival a 3000 / 0,08 = x, la qual cosa us permetrà obtenir $ 37500. La segona part de la pregunta diu que Kyle va guanyar 2000 $ menys aquest any en comparació amb l'any passat. Simplement afegiu $ 2000 a $ 37500 per descobrir que Kyle va guanyar 39500 dòlars l'any passat.
Quan un polinomi es divideix per (x + 2), la resta és -19. Quan el mateix polinomi es divideix per (x-1), la resta és 2, com es determina la resta quan el polinomi es divideix per (x + 2) (x-1)?
Sabem que f (1) = 2 i f (-2) = - 19 del teorema restant troben ara la resta de polinomi f (x) quan es divideix per (x-1) (x + 2) la resta serà de la forma Ax + B, perquè és la resta després de la divisió per un quadràtic. Ara podem multiplicar els temps divisors del quocient Q ... f (x) = Q (x-1) (x + 2) + Ax + B A continuació, inseriu 1 i -2 per a x ... f (1) = Q (1-1) (1 + 2) + A (1) + B = A + B = 2 f (-2) = Q (-2-1) (- 2 + 2) + A (-2) + B = -2A + B = -19 Resolent aquestes dues equacions, obtenim A = 7 i B = -5 Resta = Ax + B = 7x-5