In
Així que expressar en vectors que tenim
Tan
Ara
Tan
Si
llavors
Tan
La base d'un triangle isòsceles és de 16 centímetres i els costats iguals tenen una longitud de 18 centímetres. Suposem que augmentem la base del triangle a 19 mentre mantenim els costats constants. Quina és la zona?
Àrea = 145,244 centímetres ^ 2 Si necessitem calcular l'àrea segons el segon valor de la base, és a dir, 19 centímetres, només farem tots els càlculs amb aquest valor. Per calcular l'àrea del triangle isòsceles, primer cal trobar la mesura de la seva alçada. Quan tallem el triangle isòsceles per la meitat, obtindrem dos triangles dret idèntics amb base = 19/2 = 9,5 centímetres i hipotenusa = 18 centímetres. La perpendicular d’aquests triangles drets també serà l’altura del triangle isòsceles real. Podem calcular la longitud d’aques
Un costat d’un triangle és de 2 cm més curt que la base, x. L’altre costat és de 3 cm més llarg que la base. Quines longituds de la base permetran que el perímetre del triangle tingui almenys 46 cm?
X> = 15 La base = x Side1 = x-2 Side2 = x + 3 El perímetre és la suma dels tres costats. P = x + (x-2) + (x + 3)> = 46 3x +1> = 46 x> = 45/3 = 15
Una partícula es llança sobre un triangle des d’un extrem d’una base horitzontal i la pastura del vèrtex cau a l’altre extrem de la base. Si l'alfa i la beta siguin els angles base i el teta és l’angle de projecció, Demostreu que tan theta = tan alfa + tan beta?
Atès que es llança una partícula amb l’angle de projecció theta sobre un triangle DeltaACB des d’un dels seus extrems A de la base horitzontal AB alineats al llarg de l’eix X i finalment cau a l’altre extrem Bof de la base, pasturant el vèrtex C (x y) Sigui u la velocitat de projecció, T sigui el temps de vol, R = AB sigui el rang horitzontal i t sigui el temps que pren la partícula per arribar a C (x, y) El component horitzontal de la velocitat de projecció - > ucostheta El component vertical de la velocitat de projecció -> usintheta Considerant el moviment sota gravetat